ArrayList源码分析
首先来总结一下,ArrayList的一些特点:
1.arraylist本质上就是一个elementData数组,它允许对元素进行快速随机访问,可以存放null值;
2.arraylist区别于数组的地方在于能够自动扩展大小,其中关键就是grow() 方法,每次扩充后数组为原来数组的1.5倍;
3.arraylist由于本质是数组,所以它在数据的查询方面会很快,而在插入删除方面,性能会下降很多,要移动很多数据才能达到应有的效果;
4.arraylist中的removeAll(collection c)和clear() 的区别就是removeAll可以删除批量指定的元素,而clear是全部删除集合中的元素;
5.arraylist实现了RandomAccess,所以在遍历时推荐使用for循环;
6.arraylist是线程不安全的;
一、继承结构和层次关系
由图可以看出,ArrayList 继承于AbstractList;AbstractList 继承于AbstractCollection;所有类都继承于Object。
1.为什么要先继承AbstractList,让AbstractList先实现List<E>,而不是让ArrayList直接实现List<E>?
接口中全都是抽象的方法,而抽象类中可以有抽象方法,还可以有具体的实现方法,让AbstractList实现接口中一些通用的方法,而具体的类,如ArrayList就继承这个AbstractList类,拿到一些通用的方法,然后自己再实现一些自己特有的方法。
2.ArrayList实现了那些接口?
List<E>接口
RandomAccedd接口:是一个标记性接口,作用是用来快速随机存取。若实现了该接口,使用普通的for循环来遍历,性能更高,例如arraylist。而没有实现该方法的接口,使用iterator来迭代,这样性能更高,例如LinkedList。
Cloneable接口:实现了该接口,就可以使用Object.Clone()方法。
Serializable接口:实现该序列化接口,表明该类可以被序列化。
二、构造方法
1.无参构造方法
1 //这里就说明了默认会给10的大小,所以说一开始arrayList的容量是10. 2 //ArrayList中储存数据的其实就是一个数组,这个数组就是elementData,在123行定义的 private transient Object[] elementData;
3 public ArrayList() { 4 super(); //调用父类中的无参构造方法,父类中的是个空的构造方法
5 this.elementData = EMPTY_ELEMENTDATA; //EMPTY_ELEMENTDATA:是个空的Object[], 将elementData初始化,elementData也是个Object[]类型。空的Object[]会给默认大小10。
6 }
2.有参构造方法1
1 public ArrayList(int initialCapacity) { 2 super(); //父类中空的构造方法
3 if (initialCapacity < 0) //判断如果自定义大小的容量小于0,则报非法数据异常
4 throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity); 5 this.elementData = new Object[initialCapacity]; //将自定义的容量大小当成初始化elementData的大小
6 }
3.有参构造方法2(不常用)
1 //我还有一个Collection<Student>、由于这个Student继承了Person,那么根据这个构造方法,我就可以把这个Collection<Student>转换为ArrayList<Sudent>这就是这个构造方法的作用
2 public ArrayList(Collection<? extends E> c) { 3 elementData = c.toArray(); //转换为数组
4 size = elementData.length; //数组中的数据个数
5 if (elementData.getClass() != Object[].class) //每个集合的toarray()的实现方法不一样,所以需要判断一下,如果不是Object[].class类型,那么就需要使用ArrayList中的方法去改造一下。
6 elementData = Arrays.copyOf(elementData, size, Object[].class); 7 }
三、常用方法
1.add方法
boolean add(E);//默认直接在末尾添加元素
1 public boolean add(E e) { 2 //确定内部容量是否够了,size是数组中数据的个数,因为要添加一个元素,所以size+1,先判断size+1的这个数数组能否放得下,就在这个方法中去判断是否数组.length是否够用了。
3 ensureCapacityInternal(size + 1); 4 //在数据中正确的位置上放上元素e,并且size++
5 elementData[size++] = e; 6 return true; 7 }
ensureCapacityInternal(xxx);
1 private void ensureCapacityInternal(int minCapacity) { 2 if (elementData == EMPTY_ELEMENTDATA) { //判断初始化的elementData是不是空的数组,也就是没有长度。因为如果是空的话,minCapacity=size+1;其实就是等于1,空的数组没有长度就存放不了,所以就将minCapacity变成10,也就是默认大小,但是在这里,还没有真正的初始化这个elementData的大小。
3 minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); 4 } 5 //确认实际的容量,上面只是将minCapacity=10,这个方法就是真正的判断elementData是否够用
6 ensureExplicitCapacity(minCapacity); 7 }
ensureExplicitCapacity(xxx);
1 private void ensureExplicitCapacity(int minCapacity) { 2 modCount++; 3 //minCapacity如果大于了实际elementData的长度,那么就说明elementData数组的长度不够用,不够用那么就要增加elementData的length。
4 /*第一种情况:由于elementData初始化时是空的数组,那么第一次add的时候,minCapacity=size+1;也就minCapacity=1,在上一个方法(确定内部容量ensureCapacityInternal)就会判断出是空的数组,就会将minCapacity=10,到这一步为止,还没有改变elementData的大小, 5 第二种情况:elementData不是空的数组了,那么在add的时候,minCapacity=size+1;也就是minCapacity代表着elementData中增加之后的实际数据个数,拿着它判断elementData的length是否够用,如果length不够用,那么肯定要扩大容量,不然增加的这个元素就会溢出。 6 */
7 if (minCapacity - elementData.length > 0) 8 grow(minCapacity); //arrayList能自动扩展大小的关键方法就在这里了
9 }
grow(xxx); //arraylist核心的方法,能扩展数组大小的关键。
1 private void grow(int minCapacity) { 2 int oldCapacity = elementData.length; //将扩充前的elementData大小给oldCapacity
3 int newCapacity = oldCapacity + (oldCapacity >> 1); //newCapacity就是1.5倍的oldCapacity
4 if (newCapacity - minCapacity < 0)//这句话就是适应于elementData为空数组的时候,length=0,那么oldCapacity=0,newCapacity=0,所以这个判断成立,在这里就是真正的初始化elementData的大小了,就是为10。
5 newCapacity = minCapacity; 6 if (newCapacity - MAX_ARRAY_SIZE > 0)//如果newCapacity超过了最大的容量限制,就调用hugeCapacity,也就是将能给的最大值给newCapacity
7 newCapacity = hugeCapacity(minCapacity); 8 //新的容量大小已经确定好了,就copy数组,改变容量大小。
9 elementData = Arrays.copyOf(elementData, newCapacity); 10 }
hugeCapacity();
1 //这个就是上面用到的方法,就是用来赋最大值。
2 private static int hugeCapacity(int minCapacity) { 3 if (minCapacity < 0) 4 throw new OutOfMemoryError(); 5 //如果minCapacity都大于MAX_ARRAY_SIZE,那么就Integer.MAX_VALUE返回,反之将MAX_ARRAY_SIZE返回。因为maxCapacity是三倍的minCapacity,可能扩充的太大了,就用minCapacity来判断了。 6 //Integer.MAX_VALUE:2147483647 MAX_ARRAY_SIZE:2147483639 也就是说最大也就能给到第一个数值。还是超过了这个限制,就要溢出了。相当于arraylist给了两层防护。
7 return (minCapacity > MAX_ARRAY_SIZE) ?Integer.MAX_VALUE : MAX_ARRAY_SIZE; 8 }
void add(int ,E); //在特定的位置添加元素,也就是插入元素
1 public void add(int index, E element) { 2 rangeCheckForAdd(index);//检查index也就是插入的位置是否合理。 3 //跟上面的分析一样,具体看上面
4 ensureCapacityInternal(size + 1); 5 //这个方法就是用来在插入元素之后,要将index之后的元素都往后移一位,
6 System.arraycopy(elementData, index, elementData, index + 1, size - index); // System.arraycopy(...):就是将elementData在插入位置后的所有元素往后面移一位 7 //在目标位置上存放元素
8 elementData[index] = element; 9 size++; //size增加1
10 }
rangeCheckForAdd(index)
1 private void rangeCheckForAdd(int index) { 2 if (index > size || index < 0) //插入的位置肯定不能大于size 和小于0 3 //如果是,就报这个越界异常
4 throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); 5 }
2.删除方法
remove(int) 方法:通过删除指定位置上的元素
1 public E remove(int index) { 2 rangeCheck(index);//检查index的合理性
3 modCount++;//这个作用很多,比如用来检测快速失败的一种标志。
4 E oldValue = elementData(index);//通过索引直接找到该元素
5 int numMoved = size - index - 1;//计算要移动的位数。
6 if (numMoved > 0) 7 //这个方法也已经解释过了,就是用来移动元素的。
8 System.arraycopy(elementData, index+1, elementData, index, numMoved); 9 //将--size上的位置赋值为null,让gc(垃圾回收机制)更快的回收它。
10 elementData[--size] = null; 11 //返回删除的元素。
12 return oldValue; 13 }
remove(Object):这个方法可以看出来,arraylist是可以存放null值的。
1 //就是通过元素来删除该元素,就依次遍历,如果有这个元素,就将该元素的索引传给fastRemobe(index),使用这个方法来删除该元素,fastRemove(index)方法的内部跟remove(index)的实现几乎一样,这里最主要是知道arrayList可以存储null值。
2 public boolean remove(Object o) { 3 if (o == null) { 4 for (int index = 0; index < size; index++) 5 if (elementData[index] == null) { 6 fastRemove(index); 7 return true; 8 } 9 } else { 10 for (int index = 0; index < size; index++) 11 if (o.equals(elementData[index])) { 12 fastRemove(index); 13 return true; 14 } 15 } 16 return false; 17 }
clear():将elementData中每个元素都赋值为null,等待垃圾回收将这个给回收掉,所以叫clear;
1 public void clear() { 2 modCount++; 3 for (int i = 0; i < size; i++) 4 elementData[i] = null; 5 size = 0; 6 }
removeAll(collection c)
1 public boolean removeAll(Collection<?> c) { 2 return batchRemove(c, false);//批量删除
3 }
其中的batchRemove(xx,xx):用于两个方法,一个removeAll():它只清楚指定集合中的元素,retainAll() 用来测试两个集合是否有交集。
1 //这个方法,用于两处地方,如果complement为false,则用于removeAll;如果为true,则给retainAll()用
2 private boolean batchRemove(Collection<?> c, boolean complement) { 3 final Object[] elementData = this.elementData; //将原集合,记名为A
4 int r = 0, w = 0; //r用来控制循环,w是记录有多少个交集
5 boolean modified = false; 6 try { 7 for (; r < size; r++) 8 //参数中的集合C一次检测集合A中的元素是否有,
9 if (c.contains(elementData[r]) == complement) 10 //有的话,就给集合A
11 elementData[w++] = elementData[r]; 12 } finally { 13 //如果contains方法使用过程报异常
14 if (r != size) { 15 //将剩下的元素都赋值给集合A,
16 System.arraycopy(elementData, r, elementData, w, size - r); 17 w += size - r; 18 } 19 if (w != size) { 20 //这里有两个用途,在removeAll()时,w一直为0,就直接跟clear一样,全是为null。 21 //retainAll():没有一个交集返回true,有交集但不全交也返回true,而两个集合相等的时候,返回false,所以不能根据返回值来确认两个集合是否有交集,而是通过原集合的大小是否发生改变来判断,如果原集合中还有元素,则代表有交集,而元集合没有元素了,说明两个集合没有交集。 22
23 for (int i = w; i < size; i++) 24 elementData[i] = null; 25 modCount += size - w; 26 size = w; 27 modified = true; 28 } 29 } 30 return modified; 31 }
原文地址: https://www.cnblogs.com/HuiH/p/11822925.html
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
相关文章