Tomcat内存分析相关方法(jmap和mat)
Linux环境命令行
首先,根据进程命令,获取运行的tomcat的进程ID
ps aux | grep tomcat | grep java | grep bsc
在第二列可以看到进程ID
然后使用jmap可以查看内存占比:
/home/work/bsc/java/jdk-1.7-7u60/bin/jmap -heap 7840
输出的结果包括了内存各个部分的占比:
[work@xxxx.com logs]$ /home/work/bsc/java/jdk-1.7-7u60/bin/jmap -heap 10433 Attaching to process ID 10433, please wait... Debugger attached successfully. Server compiler detected. JVM version is 24.60-b09 using parallel threads in the new generation. using thread-local object allocation. Concurrent Mark-Sweep GC Heap Configuration: MinHeapFreeRatio = 40 MaxHeapFreeRatio = 70 MaxHeapSize = 8388608000 (8000.0MB) NewSize = 1048576000 (1000.0MB) MaxNewSize = 1048576000 (1000.0MB) OldSize = 5439488 (5.1875MB) NewRatio = 2 SurvivorRatio = 8 PermSize = 134217728 (128.0MB) MaxPermSize = 268435456 (256.0MB) G1HeapRegionSize = 0 (0.0MB) Heap Usage: New Generation (Eden + 1 Survivor Space): capacity = 943718400 (900.0MB) used = 393328672 (375.1074523925781MB) free = 550389728 (524.8925476074219MB) 41.67860582139757% used Eden Space: capacity = 838860800 (800.0MB) used = 288471072 (275.1074523925781MB) free = 550389728 (524.8925476074219MB) 34.388431549072266% used From Space: capacity = 104857600 (100.0MB) used = 104857600 (100.0MB) free = 0 (0.0MB) 100.0% used To Space: capacity = 104857600 (100.0MB) used = 0 (0.0MB) free = 104857600 (100.0MB) 0.0% used concurrent mark-sweep generation: capacity = 1288736768 (1229.03515625MB) used = 706435104 (673.7090148925781MB) free = 582301664 (555.3261413574219MB) 54.816089797478334% used Perm Generation: capacity = 134217728 (128.0MB) used = 65034240 (62.021484375MB) free = 69183488 (65.978515625MB) 48.45428466796875% used 27139 interned Strings occupying 3055832 bytes.
如上可以清楚的看到内存配置信息、年轻代(包括eden、from、to)、老年代、永久代各自的内存信息和占比。
使用Eclipse的memory analysis tool工具进行详细分析
首先,使用命令将内存dump到文件:
/home/work/bsc/java/jdk-1.7-7u60/bin/jmap -dump:format=b,file=/home/work/tmp/bsc.bin 10433
MAT(Memory Analyzer Tool)工具是eclipse的一个插件,使用起来非常方便,尤其是在分析大内存的dump文件时,可以非常直观的看到各个对象在堆空间中所占用的内存大小、类实例数量、对象引用关系、利用OQL对象查询,以及可以很方便的找出对象GC Roots的相关信息,当然最吸引人的还是能够快速为开发人员生成内存泄露报表,方便定位问题和分析问题。
然后就可以查看内存中的数据,点击饼图,也可以看下占比最大的对象是什么,从而分析程序的行为。
相关文章