RocketMQ中Broker的刷盘源码分析
上一篇博客的最后简单提了下CommitLog的刷盘 【RocketMQ中Broker的消息存储源码分析】 (这篇博客和上一篇有很大的联系)
Broker的CommitLog刷盘会启动一个线程,不停地将缓冲区的内容写入磁盘(CommitLog文件)中,主要分为异步刷盘和同步刷盘
异步刷盘又可以分为两种方式:
①缓存到mappedByteBuffer -> 写入磁盘(包括同步刷盘)
②缓存到writeBuffer -> 缓存到fileChannel -> 写入磁盘 (前面说过的开启内存字节缓冲区情况下)
CommitLog的两种刷盘模式:
1 public enum FlushDiskType { 2 SYNC_FLUSH, 3 ASYNC_FLUSH 4 }
同步和异步,同步刷盘由GroupCommitService实现,异步刷盘由FlushRealTimeService实现,默认采用异步刷盘
在采用异步刷盘的模式下,若是开启内存字节缓冲区,那么会在FlushRealTimeService的基础上开启CommitRealTimeService
同步刷盘:
启动GroupCommitService线程:
1 public void run() { 2 CommitLog.log.info(this.getServiceName() + " service started"); 3 4 while (!this.isStopped()) { 5 try { 6 this.waitForRunning(10); 7 this.doCommit(); 8 } catch (Exception e) { 9 CommitLog.log.warn(this.getServiceName() + " service has exception. ", e); 10 } 11 } 12 13 // Under normal circumstances shutdown, wait for the arrival of the 14 // request, and then flush 15 try { 16 Thread.sleep(10); 17 } catch (InterruptedException e) { 18 CommitLog.log.warn("GroupCommitService Exception, ", e); 19 } 20 21 synchronized (this) { 22 this.swapRequests(); 23 } 24 25 this.doCommit(); 26 27 CommitLog.log.info(this.getServiceName() + " service end"); 28 }
通过循环中的doCommit不断地进行刷盘
doCommit方法:
1 private void doCommit() { 2 synchronized (this.requestsRead) { 3 if (!this.requestsRead.isEmpty()) { 4 for (GroupCommitRequest req : this.requestsRead) { 5 // There may be a message in the next file, so a maximum of 6 // two times the flush 7 boolean flushOK = false; 8 for (int i = 0; i < 2 && !flushOK; i++) { 9 flushOK = CommitLog.this.mappedFileQueue.getFlushedWhere() >= req.getNextOffset(); 10 11 if (!flushOK) { 12 CommitLog.this.mappedFileQueue.flush(0); 13 } 14 } 15 16 req.wakeupCustomer(flushOK); 17 } 18 19 long storeTimestamp = CommitLog.this.mappedFileQueue.getStoreTimestamp(); 20 if (storeTimestamp > 0) { 21 CommitLog.this.defaultMessageStore.getStoreCheckpoint().setPhysicMsgTimestamp(storeTimestamp); 22 } 23 24 this.requestsRead.clear(); 25 } else { 26 // Because of individual messages is set to not sync flush, it 27 // will come to this process 28 CommitLog.this.mappedFileQueue.flush(0); 29 } 30 } 31 }
其中在GroupCommitService中管理着两张List:
1 private volatile List<GroupCommitRequest> requestsWrite = new ArrayList<GroupCommitRequest>(); 2 private volatile List<GroupCommitRequest> requestsRead = new ArrayList<GroupCommitRequest>();
GroupCommitRequest中封装了一个Offset
1 private final long nextOffset;
这里就需要看到上一篇博客结尾提到的handleDiskFlush方法:
1 public void handleDiskFlush(AppendMessageResult result, PutMessageResult putMessageResult, MessageExt messageExt) { 2 // Synchronization flush 3 if (FlushDiskType.SYNC_FLUSH == this.defaultMessageStore.getMessageStoreConfig().getFlushDiskType()) { 4 final GroupCommitService service = (GroupCommitService) this.flushCommitLogService; 5 if (messageExt.isWaitStoreMsgOK()) { 6 GroupCommitRequest request = new GroupCommitRequest(result.getWroteOffset() + result.getWroteBytes()); 7 service.putRequest(request); 8 boolean flushOK = request.waitForFlush(this.defaultMessageStore.getMessageStoreConfig().getSyncFlushTimeout()); 9 if (!flushOK) { 10 log.error("do groupcommit, wait for flush failed, topic: " + messageExt.getTopic() + " tags: " + messageExt.getTags() 11 + " client address: " + messageExt.getBornHostString()); 12 putMessageResult.setPutMessageStatus(PutMessageStatus.FLUSH_DISK_TIMEOUT); 13 } 14 } else { 15 service.wakeup(); 16 } 17 } 18 // Asynchronous flush 19 else { 20 if (!this.defaultMessageStore.getMessageStoreConfig().isTransientStorePoolEnable()) { 21 flushCommitLogService.wakeup(); 22 } else { 23 commitLogService.wakeup(); 24 } 25 } 26 }
这个方法的调用发生在Broker接收到来自Producer的消息,并且完成了向ByteBuffer的写入
可以看到,在同步刷盘SYNC_FLUSH模式下,会从AppendMessageResult 中取出WroteOffset以及WroteBytes从而计算出nextOffset,把这个nextOffset封装到GroupCommitRequest中,然后通过GroupCommitService 的putRequest方法,将GroupCommitRequest添加到requestsWrite这个List中
putRequest方法:
1 public synchronized void putRequest(final GroupCommitRequest request) { 2 synchronized (this.requestsWrite) { 3 this.requestsWrite.add(request); 4 } 5 if (hasNotified.compareAndSet(false, true)) { 6 waitPoint.countDown(); // notify 7 } 8 }
在完成List的add操作后,会通过CAS操作修改hasNotified这个原子化的Boolean值,同时通过waitPoint的countDown进行唤醒操作,在后面会有用
由于这里这里是同步刷盘,所以需要通过GroupCommitRequest的waitForFlush方法,在超时时间内等待该记录对应的刷盘完成
而异步刷盘会通过wakeup方法唤醒刷盘任务,并没有进行等待,这就是二者区别
回到doCommit方法中,这时会发现这里是对requestsRead这条List进行的操作,而刚才是将记录存放在requestsWrite这条List中的
这就和在run方法中的waitForRunning方法有关了:
1 protected void waitForRunning(long interval) { 2 if (hasNotified.compareAndSet(true, false)) { 3 this.onWaitEnd(); 4 return; 5 } 6 7 //entry to wait 8 waitPoint.reset(); 9 10 try { 11 waitPoint.await(interval, TimeUnit.MILLISECONDS); 12 } catch (InterruptedException e) { 13 log.error("Interrupted", e); 14 } finally { 15 hasNotified.set(false); 16 this.onWaitEnd(); 17 } 18 }
这里通过CAS操作修改hasNotified值,从而调用onWaitEnd方法;如果修改失败,则因为await进入阻塞,等待上面所说的putRequest方法将其唤醒,也就是说当Producer发送的消息被缓存成功后,调用handleDiskFlush方法后,唤醒刷盘线工作,当然刷盘线程在达到超时时间interval后也会唤醒
再来看看onWaitEnd方法:
1 protected void onWaitEnd() { 2 this.swapRequests(); 3 } 4 5 private void swapRequests() { 6 List<GroupCommitRequest> tmp = this.requestsWrite; 7 this.requestsWrite = this.requestsRead; 8 this.requestsRead = tmp; 9 }
可以看到,这里是将两个List进行了交换
这是一个非常有趣的做法,如果熟悉JVM的话,有没有觉得这其实很像新生代的标记-清除算法!
当刷盘线程阻塞的时候,requestsWrite中会填充记录,当刷盘线程被唤醒工作的时候,首先会将requestsWrite和requestsRead进行交换,那么此时的记录就是从requestsRead中读取的了,而同时requestsWrite会变为空的List,消息记录就会往这个空的List中填充,如此往复
可以看到doCommit方法中,当requestsRead不为空的时候,在最后会调用requestsRead的clear方法,由此证明了我上面的说法
仔细来看看是如何进行刷盘的:
1 for (GroupCommitRequest req : this.requestsRead) { 2 // There may be a message in the next file, so a maximum of 3 // two times the flush 4 boolean flushOK = false; 5 for (int i = 0; i < 2 && !flushOK; i++) { 6 flushOK = CommitLog.this.mappedFileQueue.getFlushedWhere() >= req.getNextOffset(); 7 8 if (!flushOK) { 9 CommitLog.this.mappedFileQueue.flush(0); 10 } 11 } 12 13 req.wakeupCustomer(flushOK); 14 }
通过遍历requestsRead,可以到得到GroupCommitRequest封装的NextOffset
其中flushedWhere是用来记录上一次刷盘完成后的offset,若是上一次的刷盘位置大于等于NextOffset,就说明从NextOffset位置起始已经被刷新过了,不需要刷新,否则调用mappedFileQueue的flush方法进行刷盘
MappedFileQueue的flush方法:
1 public boolean flush(final int flushLeastPages) { 2 boolean result = true; 3 MappedFile mappedFile = this.findMappedFileByOffset(this.flushedWhere, this.flushedWhere == 0); 4 if (mappedFile != null) { 5 long tmpTimeStamp = mappedFile.getStoreTimestamp(); 6 int offset = mappedFile.flush(flushLeastPages); 7 long where = mappedFile.getFileFromOffset() + offset; 8 result = where == this.flushedWhere; 9 this.flushedWhere = where; 10 if (0 == flushLeastPages) { 11 this.storeTimestamp = tmpTimeStamp; 12 } 13 } 14 15 return result; 16 }
这里首先根据flushedWhere上一次刷盘完成后的offset,通过findMappedFileByOffset方法,找到CommitLog文件的映射MappedFile
有关MappedFile及其相关操作在我之前的博客中介绍过很多次,就不再累赘
再找到MappedFile后,调用其flush方法:
MappedFile的flush方法:
1 public int flush(final int flushLeastPages) { 2 if (this.isAbleToFlush(flushLeastPages)) { 3 if (this.hold()) { 4 int value = getReadPosition(); 5 6 try { 7 //We only append data to fileChannel or mappedByteBuffer, never both. 8 if (writeBuffer != null || this.fileChannel.position() != 0) { 9 this.fileChannel.force(false); 10 } else { 11 this.mappedByteBuffer.force(); 12 } 13 } catch (Throwable e) { 14 log.error("Error occurred when force data to disk.", e); 15 } 16 17 this.flushedPosition.set(value); 18 this.release(); 19 } else { 20 log.warn("in flush, hold failed, flush offset = " + this.flushedPosition.get()); 21 this.flushedPosition.set(getReadPosition()); 22 } 23 } 24 return this.getFlushedPosition(); 25 }
首先isAbleToFlush方法:
1 private boolean isAbleToFlush(final int flushLeastPages) { 2 int flush = this.flushedPosition.get(); 3 int write = getReadPosition(); 4 5 if (this.isFull()) { 6 return true; 7 } 8 9 if (flushLeastPages > 0) { 10 return ((write / OS_PAGE_SIZE) - (flush / OS_PAGE_SIZE)) >= flushLeastPages; 11 } 12 13 return write > flush; 14 }
其中flush记录的是上一次完成刷新后的位置,write记录的是当前消息内容写入后的位置
当flushLeastPages 大于0的时候,通过:
1 return ((write / OS_PAGE_SIZE) - (flush / OS_PAGE_SIZE)) >= flushLeastPages;
可以计算出是否满足page的要求,其中OS_PAGE_SIZE是4K,也就是说1个page大小是4k
由于这里是同步刷盘,flushLeastPages是0,不对page要求,只要有缓存有内容就会刷盘;但是在异步刷盘中,flushLeastPages是4,也就是说,只有当缓存的消息至少是4(page个数)*4K(page大小)= 16K时,异步刷盘才会将缓存写入文件
回到MappedFile的flush方法,在通过isAbleToFlush检查完写入要求后
1 int value = getReadPosition(); 2 try { 3 //We only append data to fileChannel or mappedByteBuffer, never both. 4 if (writeBuffer != null || this.fileChannel.position() != 0) { 5 this.fileChannel.force(false); 6 } else { 7 this.mappedByteBuffer.force(); 8 } 9 } catch (Throwable e) { 10 log.error("Error occurred when force data to disk.", e); 11 } 12 13 this.flushedPosition.set(value);
首先通过getReadPosition获取当前消息内容写入后的位置,由于是同步刷盘,所以这里调用mappedByteBuffer的force方法,通过JDK的NIO操作,将mappedByteBuffer缓存中的数据写入CommitLog文件中
最后更新flushedPosition的值
再回到MappedFileQueue的flush方法,在完成MappedFile的flush后,还需要更新flushedWhere的值
此时缓存中的数据完成了持久化,同步刷盘结束
异步刷盘:
①FlushCommitLogService:
1 public void run() { 2 CommitLog.log.info(this.getServiceName() + " service started"); 3 4 while (!this.isStopped()) { 5 boolean flushCommitLogTimed = CommitLog.this.defaultMessageStore.getMessageStoreConfig().isFlushCommitLogTimed(); 6 7 int interval = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushIntervalCommitLog(); 8 int flushPhysicQueueLeastPages = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushCommitLogLeastPages(); 9 10 int flushPhysicQueueThoroughInterval = 11 CommitLog.this.defaultMessageStore.getMessageStoreConfig().getFlushCommitLogThoroughInterval(); 12 13 boolean printFlushProgress = false; 14 15 // Print flush progress 16 long currentTimeMillis = System.currentTimeMillis(); 17 if (currentTimeMillis >= (this.lastFlushTimestamp + flushPhysicQueueThoroughInterval)) { 18 this.lastFlushTimestamp = currentTimeMillis; 19 flushPhysicQueueLeastPages = 0; 20 printFlushProgress = (printTimes++ % 10) == 0; 21 } 22 23 try { 24 if (flushCommitLogTimed) { 25 Thread.sleep(interval); 26 } else { 27 this.waitForRunning(interval); 28 } 29 30 if (printFlushProgress) { 31 this.printFlushProgress(); 32 } 33 34 long begin = System.currentTimeMillis(); 35 CommitLog.this.mappedFileQueue.flush(flushPhysicQueueLeastPages); 36 long storeTimestamp = CommitLog.this.mappedFileQueue.getStoreTimestamp(); 37 if (storeTimestamp > 0) { 38 CommitLog.this.defaultMessageStore.getStoreCheckpoint().setPhysicMsgTimestamp(storeTimestamp); 39 } 40 long past = System.currentTimeMillis() - begin; 41 if (past > 500) { 42 log.info("Flush data to disk costs {} ms", past); 43 } 44 } catch (Throwable e) { 45 CommitLog.log.warn(this.getServiceName() + " service has exception. ", e); 46 this.printFlushProgress(); 47 } 48 } 49 50 // Normal shutdown, to ensure that all the flush before exit 51 boolean result = false; 52 for (int i = 0; i < RETRY_TIMES_OVER && !result; i++) { 53 result = CommitLog.this.mappedFileQueue.flush(0); 54 CommitLog.log.info(this.getServiceName() + " service shutdown, retry " + (i + 1) + " times " + (result ? "OK" : "Not OK")); 55 } 56 57 this.printFlushProgress(); 58 59 CommitLog.log.info(this.getServiceName() + " service end"); 60 }
flushCommitLogTimed:是否使用定时刷盘
interval:刷盘时间间隔,默认500ms
flushPhysicQueueLeastPages:page大小,默认4个
flushPhysicQueueThoroughInterval:彻底刷盘时间间隔,默认10s
首先根据lastFlushTimestamp(上一次刷盘时间)+ flushPhysicQueueThoroughInterval和当前时间比较,判断是否需要进行一次彻底刷盘,若达到了需要则将flushPhysicQueueLeastPages置为0
接着根据flushCommitLogTimed判断
当flushCommitLogTimed为true,使用sleep等待500ms
当flushCommitLogTimed为false,调用waitForRunning在超时时间为500ms下阻塞,其唤醒条件也就是在handleDiskFlush中的wakeup唤醒
最后,和同步刷盘一样,调用mappedFileQueue的flush方法
只不过,这里的flushPhysicQueueLeastPages决定了其是进行彻底刷新,还是按4page(16K)的标准刷新
②CommitRealTimeService
这种刷盘方式需要和FlushCommitLogService配合
CommitRealTimeService的run方法:
1 public void run() { 2 CommitLog.log.info(this.getServiceName() + " service started"); 3 while (!this.isStopped()) { 4 int interval = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getCommitIntervalCommitLog(); 5 6 int commitDataLeastPages = CommitLog.this.defaultMessageStore.getMessageStoreConfig().getCommitCommitLogLeastPages(); 7 8 int commitDataThoroughInterval = 9 CommitLog.this.defaultMessageStore.getMessageStoreConfig().getCommitCommitLogThoroughInterval(); 10 11 long begin = System.currentTimeMillis(); 12 if (begin >= (this.lastCommitTimestamp + commitDataThoroughInterval)) { 13 this.lastCommitTimestamp = begin; 14 commitDataLeastPages = 0; 15 } 16 17 try { 18 boolean result = CommitLog.this.mappedFileQueue.commit(commitDataLeastPages); 19 long end = System.currentTimeMillis(); 20 if (!result) { 21 this.lastCommitTimestamp = end; // result = false means some data committed. 22 //now wake up flush thread. 23 flushCommitLogService.wakeup(); 24 } 25 26 if (end - begin > 500) { 27 log.info("Commit data to file costs {} ms", end - begin); 28 } 29 this.waitForRunning(interval); 30 } catch (Throwable e) { 31 CommitLog.log.error(this.getServiceName() + " service has exception. ", e); 32 } 33 } 34 35 boolean result = false; 36 for (int i = 0; i < RETRY_TIMES_OVER && !result; i++) { 37 result = CommitLog.this.mappedFileQueue.commit(0); 38 CommitLog.log.info(this.getServiceName() + " service shutdown, retry " + (i + 1) + " times " + (result ? "OK" : "Not OK")); 39 } 40 CommitLog.log.info(this.getServiceName() + " service end"); 41 }
这里的逻辑和FlushCommitLogService中相似,之不过参数略有不同
interval:提交时间间隔,默认200ms
commitDataLeastPages:page大小,默认4个
commitDataThoroughInterval:提交完成时间间隔,默认200ms
基本和FlushCommitLogService相似,只不过调用了mappedFileQueue的commit方法
1 public boolean commit(final int commitLeastPages) { 2 boolean result = true; 3 MappedFile mappedFile = this.findMappedFileByOffset(this.committedWhere, this.committedWhere == 0); 4 if (mappedFile != null) { 5 int offset = mappedFile.commit(commitLeastPages); 6 long where = mappedFile.getFileFromOffset() + offset; 7 result = where == this.committedWhere; 8 this.committedWhere = where; 9 } 10 11 return result; 12 }
这里和mappedFileQueue的flush方法很相似,通过committedWhere寻找MappedFile
然后调用MappedFile的commit方法:
1 public int commit(final int commitLeastPages) { 2 if (writeBuffer == null) { 3 //no need to commit data to file channel, so just regard wrotePosition as committedPosition. 4 return this.wrotePosition.get(); 5 } 6 if (this.isAbleToCommit(commitLeastPages)) { 7 if (this.hold()) { 8 commit0(commitLeastPages); 9 this.release(); 10 } else { 11 log.warn("in commit, hold failed, commit offset = " + this.committedPosition.get()); 12 } 13 } 14 15 // All dirty data has been committed to FileChannel. 16 if (writeBuffer != null && this.transientStorePool != null && this.fileSize == this.committedPosition.get()) { 17 this.transientStorePool.returnBuffer(writeBuffer); 18 this.writeBuffer = null; 19 } 20 21 return this.committedPosition.get(); 22 }
依旧和MappedFile的flush方法很相似,在isAbleToCommit检查完page后调用commit0方法
MappedFile的commit0方法:
1 protected void commit0(final int commitLeastPages) { 2 int writePos = this.wrotePosition.get(); 3 int lastCommittedPosition = this.committedPosition.get(); 4 5 if (writePos - this.committedPosition.get() > 0) { 6 try { 7 ByteBuffer byteBuffer = writeBuffer.slice(); 8 byteBuffer.position(lastCommittedPosition); 9 byteBuffer.limit(writePos); 10 this.fileChannel.position(lastCommittedPosition); 11 this.fileChannel.write(byteBuffer); 12 this.committedPosition.set(writePos); 13 } catch (Throwable e) { 14 log.error("Error occurred when commit data to FileChannel.", e); 15 } 16 } 17 }
在 【RocketMQ中Broker的消息存储源码分析】
中说过,当使用这种方式时,会先将消息缓存在writeBuffer中而不是之前的mappedByteBuffer
这里就可以清楚地看到将writeBuffer中从lastCommittedPosition(上次提交位置)开始到writePos(缓存消息结束位置)的内容缓存到了fileChannel中相同的位置,并没有写入磁盘
在缓存到fileChannel后,会更新committedPosition值
回到commit方法,在向fileCfihannel缓存完毕后,会检查committedPosition是否达到了fileSize,也就是判断writeBuffer中的内容是不是去全部提交完毕
若是全部提交,需要通过transientStorePool的returnBuffer方法来回收利用writeBuffer
transientStorePool其实是一个双向队列,由CommitLog来管理
TransientStorePool:
1 public class TransientStorePool { 2 private static final InternalLogger log = InternalLoggerFactory.getLogger(LoggerName.STORE_LOGGER_NAME); 3 4 private final int poolSize; 5 private final int fileSize; 6 private final Deque<ByteBuffer> availableBuffers; 7 private final MessageStoreConfig storeConfig; 8 9 public TransientStorePool(final MessageStoreConfig storeConfig) { 10 this.storeConfig = storeConfig; 11 this.poolSize = storeConfig.getTransientStorePoolSize(); 12 this.fileSize = storeConfig.getMapedFileSizeCommitLog(); 13 this.availableBuffers = new ConcurrentLinkedDeque<>(); 14 } 15 ...... 16 }
returnBuffer方法:
1 public void returnBuffer(ByteBuffer byteBuffer) { 2 byteBuffer.position(0); 3 byteBuffer.limit(fileSize); 4 this.availableBuffers.offerFirst(byteBuffer); 5 }
这里就可以清楚地看到byteBuffer确实被回收了
回到MappedFileQueue的commit方法:
1 public boolean commit(final int commitLeastPages) { 2 boolean result = true; 3 MappedFile mappedFile = this.findMappedFileByOffset(this.committedWhere, this.committedWhere == 0); 4 if (mappedFile != null) { 5 int offset = mappedFile.commit(commitLeastPages); 6 long where = mappedFile.getFileFromOffset() + offset; 7 result = where == this.committedWhere; 8 this.committedWhere = where; 9 } 10 11 return result; 12 }
在完成mappedFile的commit后,通过where和committedWhere来判断是否真的向fileCfihannel缓存了 ,只有确实缓存了result才是false!
之后会更新committedWhere,并返回result
那么回到CommitRealTimeService的run方法,在完成commit之后,会判断result
只有真的向fileCfihannel缓存后,才会调用flushCommitLogService的wakeup方法,也就是唤醒了FlushCommitLogService的刷盘线程
唯一和之前分析的FlushCommitLogService不同的地方是在MappedFile的flush方法中:
1 if (writeBuffer != null || this.fileChannel.position() != 0) { 2 this.fileChannel.force(false); 3 } else { 4 this.mappedByteBuffer.force(); 5 }
之前在没有开启内存字节缓冲区的情况下,是将mappedByteBuffer中的内容写入磁盘
而这时,终于轮到fileChannel了
可以看到这里的条件判断,当writeBuffer不等与null,或者fileChannel的position不等与0
writeBuffer等于null的情况会在TransientStorePool对其回收之后
到这里就可以明白开启内存字节缓冲区的情况下,其实是进行了两次缓存才写入磁盘
至此,Broker的消息持久化以及刷盘的整个过程完毕
原文地址: https://www.cnblogs.com/a526583280/p/11312750.html
本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
相关文章