一文带你了解Go语言中锁的实现
前言
此文为学习Go锁和读写锁的总结文档, 主要从"参考"部分的文章结合源码学习, 总结于此.
ps: 注释"r: "开头代表来自参考文章, 见最后
Mutex
省流不看版:
没锁直接锁,锁不上自旋或让出调度等待唤醒,直到锁上.
饥饿模式阻塞队列先进先出
Lock
// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
// 上锁,成功返回
if atomic.CompareAndSwapint32(&m.state, 0, mutexLocked) {
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
return
}
// Slow path (outlined so that the fast path can be inlined)
//已经锁上的写成进入慢锁流程
m.lockSlow()
}
lockSlow
func (m *Mutex) lockSlow() {
var waitStartTime int64 //执行时间
starving := false //当前请求是否是饥饿模式
awoke := false //当前请求是否是唤醒状态
iter := 0 //自旋次数
old := m.state //旧state值
for {
// Don't spin in starvation mode, ownership is handed off to waiters
// so we won't be able to acquire the mutex anyway.
//旧state值已上锁,并且未进入饥饿模式,且可以自旋,进入自旋逻辑
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// Active spinning makes sense.
// Try to set mutexWoken flag to infORM Unlock
// to not wake other blocked goroutines.
// 当前协程未唤醒
//&& old.state 为未唤起状态,就是说没有其他被唤起的waiter
//&& waiter数>0
//&& m.state标记为唤起状态成功
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
//标记当前协程为唤起状态
//r: 这是为了通知在解锁Unlock()中不要再唤醒其他的waiter了
awoke = true
}
//自旋
runtime_doSpin()
//自旋计数器
iter++
old = m.state
continue
}
//r: old是锁当前的状态,new是期望的状态,以期于在后面的CAS操作中更改锁的状态
//new代表期望的state值
new := old
// Don't try to acquire starving mutex, new arriving goroutines must queue.
//old不是饥饿状态,new带上上锁标志位,也就是饥饿状态不上锁
if old&mutexStarving == 0 {
new |= mutexLocked
}
//旧state值是上锁状态或饥饿状态,新state waiter数+1
//r: 表示当前goroutine将被作为waiter置于等待队列队尾
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
// The current goroutine switches mutex to starvation mode.
// But if the mutex is currently unlocked, don't do the switch.
// Unlock expects that starving mutex has waiters, which will not
// be true in this case.
//当前协程为饥饿状态&&旧state已上锁,新state加饥饿标志位
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
//r:? 当awoke为true,则表明当前goroutine在自旋逻辑中,成功修改锁的Woken状态位为1
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
//新state关闭唤醒标志位
//r: 因为在后续的逻辑中,当前goroutine要么是拿到锁了,要么是被挂起。
// 如果是挂起状态,那就需要等待其他释放锁的goroutine来唤醒。
// 假如其他goroutine在unlock的时候发现Woken的位置不是0,则就不会去唤醒,那该goroutine就无法再醒来加锁。(见unlock逻辑)
new &^= mutexWoken
}
//r: 尝试将锁的状态更新为期望状态
if atomic.CompareAndSwapInt32(&m.state, old, new) {
//旧state不是锁或饥饿状态,上锁成功,返回
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
// If we were already waiting before, queue at the front of the queue.
//r: 如果走到这里,那就证明当前goroutine没有获取到锁
// 这里判断waitStartTime != 0就证明当前goroutine之前已经等待过了,则需要将其放置在等待队列队头
//进入队列是否排在最前
queueLifo := waitStartTime != 0
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
//阻塞
runtime_SeMacquireMutex(&m.sema, queueLifo, 1)
//r: 被信号量唤醒之后检查当前goroutine是否应该表示为饥饿
// (这里表示为饥饿之后,会在下一轮循环中尝试将锁的状态更改为饥饿模式)
// 1. 如果当前goroutine已经饥饿(在上一次循环中更改了starving为true)
// 2. 如果当前goroutine已经等待了1ms以上
//被信号量唤醒后当前协程是否进入饥饿状态
//1. 之前是饥饿状态
//2. 运行时间超过1ms
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
// 再次获取锁状态
old = m.state
if old&mutexStarving != 0 {
// If this goroutine was woken and mutex is in starvation mode,
// ownership was handed off to us but mutex is in somewhat
// inconsistent state: mutexLocked is not set and we are still
// accounted as waiter. Fix that.
//饥饿模式协程是在Unlock()时handoff到当前协程的
//r:? 如果当前锁既不是被获取也不是被唤醒状态,或者等待队列为空
// 这代表锁状态产生了不一致的问题
if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
throw("sync: inconsistent mutex state")
}
//m.state 上锁,waiter数-1
delta := int32(mutexLocked - 1<<mutexWaiterShift)
//当前协程不是饥饿状态或旧state的waiter数=1,则m.state饥饿标志位置0
if !starving || old>>mutexWaiterShift == 1 {
// Exit starvation mode.
// Critical to do it here and consider wait time.
// Starvation mode is so inefficient, that two goroutines
// can go lock-step infinitely once they switch mutex
// to starvation mode.
delta -= mutexStarving
}
atomic.AddInt32(&m.state, delta)
//拿到锁,退出.
break
}
awoke = true
iter = 0
} else {
//执行循环前的语句,恢复最新现场
old = m.state
}
}
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
}
Unlock
// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
if race.Enabled {
_ = m.state
race.Release(unsafe.Pointer(m))
}
// Fast path: drop lock bit.
//m.state取消锁状态,返回值new代表修改后的新值
//如果为0代表没有其他锁了,退出;否则进入unlockSlow()
//锁空闲有两种情况:
//1. 所有位为0,代表没有锁了
//2. 标志位为0, waiter数量>0,还有协程在等待解锁
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}
UnlockSlow
func (m *Mutex) unlockSlow(new int32) {
if (new+mutexLocked)&mutexLocked == 0 {
throw("sync: unlock of unlocked mutex")
}
if new&mutexStarving == 0 {
old := new
for {
// If there are no waiters or a goroutine has already
// been woken or grabbed the lock, no need to wake anyone.
// In starvation mode ownership is directly handed off from unlocking
// goroutine to the next waiter. We are not part of this chain,
// since we did not observe mutexStarving when we unlocked the mutex above.
// So get off the way.
//解锁,结束,退出
//1. 没有waiter了
//2. 已上锁
//3. 锁处于唤醒状态,表示有协程被唤醒
//4. 饥饿模式, 所有权交给了被解锁饥饿模式的waiter
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
return
}
// Grab the right to wake someone.
// 如果能走到这,那就是上面的if判断没通过
// 说明当前锁是空闲状态,但是等待队列中有waiter,且没有goroutine被唤醒
// 所以,这里我们想要把锁的状态设置为被唤醒,等待队列waiter数-1
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
//通过信号量唤醒某一个waiter,退出
runtime_Semrelease(&m.sema, false, 1)
return
}
//失败的话,更新old信息,进入下个循环
old = m.state
}
} else {
// Starving mode: handoff mutex ownership to the next waiter, and yield
// our time slice so that the next waiter can start to run immediately.
// Note: mutexLocked is not set, the waiter will set it after wakeup.
// But mutex is still considered locked if mutexStarving is set,
// so new coming goroutines won't acquire it.
//饥饿模式,唤醒等待队列队头waiter
runtime_Semrelease(&m.sema, true, 1)
}
}
其他关键函数
runtime_canSpin
是否可自旋,不展开
runtime_doSpin
核心是汇编实现,循环执行三十次PAUSE指令
runtime_SemacquireMutex
信号量上锁
sem来自单词semaphore 信号量
runtime_Semrelease
信号量释放
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)
If handoff is true, pass count directly to the first waiter.
handoff 就是传球的意思,handoff 为 false 时,仅仅唤醒等待队列中第一个协程,但是不会立马调度该协程;当 handoff 为 true 时,会立马调度被唤醒的协程,此外,当 handoff = true 时,被唤醒的协程会继承当前协程的时间片。具体例子,假设每个 goroutine 的时间片为 2ms,gorounte A 已经执行了 1ms,假设它通过 runtime_Semrelease(handoff = true) 唤醒了 goroutine B,则 goroutine B 剩余的时间片为 2 - 1 = 1ms。
golang 中 sync.Mutex 的实现
semrelease1(addr, handoff, skipframes) 参数handoff若为true,则让被唤醒的g立刻继承当前g的时间片继续执行。若handoff为false,则把刚被唤醒的g放到当前p的runq中。
Golang sync.Mutex 源码分析
RWMutex
很简单,看源码就行
[Go并发] - RWMutex源码解析
type RWMutex struct {
w Mutex // held if there are pending writers
writerSem uint32 // semaphore for writers to wait for completing readers
readerSem uint32 // semaphore for readers to wait for completing writers
readerCount int32 // number of pending readers 当前读锁数量
readerWait int32 // number of departing readers 要离开的读锁数量,暨等待写锁解锁,解锁后可以释放的读锁数量
}
Lock()
// Lock locks rw for writing.
// If the lock is already locked for reading or writing,
// Lock blocks until the lock is available.
func (rw *RWMutex) Lock() {
if race.Enabled {
_ = rw.w.state
race.Disable()
}
// First, resolve competition with other writers.
rw.w.Lock() //通过sync.Lock()限制多写锁进入下边的逻辑
// Announce to readers there is a pending writer.
//r值不变, rwmutexMaxReaders值为1<<30
//可以理解为只要读锁的数量小于1<<30位,rw.readerCount值<0表示有写锁.
//也可以理解为加上一个负数,将31位以上都标记为1,代表有写锁, 剩余30位记录读锁数量
r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders
// Wait for active readers.
//r!=0 有读锁,不能释放写锁
//将readerCount转移到readerWait,readerWait的新值!=0 (以上可以翻译为有读锁,将读锁数转移到读等待数,然后写锁阻塞,)
// 满足上面两个条件,写锁阻塞, 等待唤醒,不返回
if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 {
runtime_SemacquireMutex(&rw.writerSem, false, 0)
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(&rw.readerSem))
race.Acquire(unsafe.Pointer(&rw.writerSem))
}
}
UnLock()
// Unlock unlocks rw for writing. It is a run-time error if rw is
// not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular
// goroutine. One goroutine may RLock (Lock) a RWMutex and then
// arrange for another goroutine to RUnlock (Unlock) it.
func (rw *RWMutex) Unlock() {
if race.Enabled {
_ = rw.w.state
race.Release(unsafe.Pointer(&rw.readerSem))
race.Disable()
}
// Announce to readers there is no active writer.\
//将Lock()方法减去的值加回来,变成正数
r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders)
if r >= rwmutexMaxReaders {
race.Enable()
throw("sync: Unlock of unlocked RWMutex")
}
// Unblock blocked readers, if any.
//唤醒在RLock()方法阻塞的读操作,数量为r
for i := 0; i < int(r); i++ {
runtime_Semrelease(&rw.readerSem, false, 0)
}
// Allow other writers to proceed.
rw.w.Unlock()
if race.Enabled {
race.Enable()
}
}
RLock()
// RLock locks rw for reading.
//
// It should not be used for recursive read locking; a blocked Lock
// call excludes new readers from acquiring the lock. See the
// documentation on the RWMutex type.
func (rw *RWMutex) RLock() {
if race.Enabled {
_ = rw.w.state
race.Disable()
}
//<0表示已上写锁,阻塞
if atomic.AddInt32(&rw.readerCount, 1) < 0 {
// A writer is pending, wait for it.
runtime_SemacquireMutex(&rw.readerSem, false, 0)
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(&rw.readerSem))
}
}
UnRLock()
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (rw *RWMutex) RUnlock() {
if race.Enabled {
_ = rw.w.state
race.ReleaseMerge(unsafe.Pointer(&rw.writerSem))
race.Disable()
}
//<0表示已上写锁,慢解锁
if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 {
// Outlined slow-path to allow the fast-path to be inlined
rw.rUnlockSlow(r)
}
if race.Enabled {
race.Enable()
}
}
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (rw *RWMutex) rUnlockSlow(r int32) {
if r+1 == 0 || r+1 == -rwmutexMaxReaders {
race.Enable()
throw("sync: RUnlock of unlocked RWMutex")
}
// A writer is pending.
//最后一个读等待,唤醒写锁
if atomic.AddInt32(&rw.readerWait, -1) == 0 {
// The last reader unblocks the writer.
runtime_Semrelease(&rw.writerSem, false, 1)
}
}
到此这篇关于一文带你了解Go语言中锁的实现的文章就介绍到这了,更多相关Go语言 锁内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
相关文章