Pytorch:Conv2d卷积前后尺寸详解

2023-02-21 12:02:50 卷积 详解 尺寸

Pytorch:Conv2d卷积前后尺寸

Conv2d参数

尺寸变化

卷积前的尺寸为(N,C,W,H) ,卷积后尺寸为(N,F,W_n,H_n)

  • W_n = (W-F+S+2P)/S 向下取整
  • H_n = (H-F+S+2P)/S

示例

# m = nn.Conv2d(16, 33, 3, stride=2)
# non-square kernels and unequal stride and with padding
m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
# non-square kernels and unequal stride and with padding and dilation
# m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
input = torch.randn(20, 16, 50, 100)
print(input.size())
output = m(input)
print(output.size())

反卷积(转置卷积)Conv2DTranspose 输出的尺寸大小

keras的Conv2DTranspose

The size of the input feature map: (N, N)
Conv2dTranspose(kernel_size=k, padding, strides=s)

padding=‘same' ,输出尺寸 = N × s
padding=‘valid',输出尺寸 = (N-1) × s + k

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

相关文章