Python中的SOLID原则实例详解

2023-02-15 12:02:30 原则 实例 详解

前言

SOLID 是一组面向对象的设计原则,旨在使代码更易于维护和灵活。它们是由 Robert “Uncle Bob” Martin 于 2000 年在他的论文 设计原则和设计模式中创造的。SOLID 原则适用于任何面向对象的语言,但在本文中我将重点关注它们在 python 应用程序中的含义。

我最初以 PHP 为基础撰写有关 SOLID 原则的文章,但由于此处的课程可以轻松应用于任何面向对象的语言,我认为我会考虑使用 Python 重新编写它。如果您只熟悉 php 或 Python,那么这将是学习另一面的一个很好的学习资源。

在这里我们还应该注意,Python 并没有真正的接口系统,所以我使用元类来创建所需的情况。有关元类的更多说明,请参阅Python 中面向对象编程入门文章的基础知识中的接口部分。

SOLID 是一个首字母缩写词,代表以下内容:

  • 单一职责原则
  • 开放/封闭原则
  • Liskov替代原则
  • 接口隔离原则
  • 依赖倒置原则

我们将依次解析它们。

单一职责原则

这表明一个类应该有单一的责任,但更重要的是,一个类应该只有一个改变的理由。

以名为Page的(简单)类为例。

import JSON

class Page():
    def __init__(self, title):
        self._title = title

    def get_title(self):
        return self._title

    def set_title(self, title):
        self._title = title

    def get_page(self):
        return [self._title]

    def fORMat_json(self):
        return json.dumps(self.get_page())

此类知道 title 属性并允许通过 get() 方法检索此 title 属性。我们还可以使用此类中名为 format_json() 的方法将页面作为 JSON 字符串返回。这似乎是个好主意,因为类负责自己的格式。

但是,如果我们想要更改 JSON 字符串的输出,或者向类中添加另一种类型的输出,会发生什么情况呢?我们需要更改类以添加另一个方法或更改现有方法以适应。这对于像这样简单的类来说很好,但如果它包含更多属性,那么更改格式将更加复杂。

一个更好的方法是修改Page类,这样它只知道数据是句柄。然后我们创建一个名为JsonPageFormatter的辅助类,用于将Page对象格式化为 JSON。

import json

class Page():
    def __init__(self, title):
        self._title = title

    def get_title(self):
        return self._title

    def set_title(self, title):
        self._title = title

    def get_page(self):
        return [self._title]

class JsonPageFormatter():
    def format_json(page: Page):
        return json.dumps(page.get_page())

这样做意味着如果我们想创建一个 XML 格式,我们只需添加一个名为XmlPageFormatter的类并编写一些简单的代码来输出 XML。我们现在只有一个理由来更改Page类。

开闭原则

在开闭原则中,类应该 对扩展开放,对修改关闭。本质上意味着类应该被扩展以改变功能,而不是被改变成其他东西。

以下面两个类为例。

class Rectangle():
    def __init__(self, width, height):
        self._width = width
        self._height = height

    def get_width(self):
        return self._width

    def set_width(self, width):
        self._width = width

    def get_height(self):
        return self._height

    def set_height(self, height):
        self._height = height

class Board():
    @property
    def rectangles(self):
        return self._rectangles

    @rectangles.setter
    def rectangles(self, value):
        self._rectangles = value  

    def calculateArea(self):
        area = 0
        for item in self.rectangles:
            area += item.get_height() * item.get_width()
        return area

我们有一个包含矩形数据的Rectangle类,以及一个用作Rectangle对象集合的Board类。使用此设置,我们可以通过循环遍历rectangles集合属性中的项目并计算它们的面积来轻松找出板的面积。

此设置的问题在于我们受到可以传递给Board类的对象类型的限制。例如,如果我们想将一个Circle对象传递给Board类,我们需要编写条件语句和代码来检测和计算Board的面积。

解决这个问题的正确方法是将面积计算代码移到形状类中,并让所有形状类都扩展一个Shape接口。我们现在可以创建一个Rectangle和Circle形状类,它们将在被要求时计算它们的面积。

import math

class ShapeMeta(type):
    def __instancecheck__(self, instance):
        return self.__subclasscheck__(type(instance))

    def __subclasscheck__(self, subclass):
        return (hasattr(subclass, 'area') and callable(subclass.area))

class ShapeInterface(metaclass=ShapeMeta):
    pass

class Rectangle(ShapeInterface):
    def __init__(self, width, height):
        self._width = width
        self._height = height

    def get_width(self):
        return self._width

    def set_width(self, width):
        self._width = width

    def get_height(self):
        return self._height

    def set_height(self, height):
        self._height = height

    def area(self):
        return self.get_width() * self.get_height()

class Circle(ShapeInterface):
    def __init__(self, radius):
        self._radius = radius

    def get_radius(self):
        return self._radius

    def set_radius(self, radius):
        self._radius = radius

    def area(self):
        return self.get_radius() * self.get_radius() * math.pi

现在 可以重新设计Board类,使其不关心传递给它的形状类型,只要它们实现 area() 方法即可。

class Board():
    def __init__(self, shapes):
        self._shapes = shapes

    def calculateArea(self):
        area = 0
        for shape in self._shapes:
            area += shape.area()
        return area

我们现在已经设置了这些对象,这意味着如果我们有不同类型的对象,我们不需要改变Board类。我们只是创建实现Shape的对象,并以与其他类相同的方式将其传递到集合中。

里氏替换原则

由 Barbara Liskov 在 1987 年创建,它指出对象应该可以被它们的子类型替换而不改变程序的工作方式。换句话说,派生类必须可以替代它们的基类而不会导致错误。

下面的代码定义了一个Rectangle类,我们可以用它来创建和计算矩形的面积。

class Rectangle():
    def __init__(self, width, height):
        self._width = width
        self._height = height

    def get_width(self):
        return self._width

    def set_width(self, width):
        self._width = width

    def get_height(self):
        return self._height

    def set_height(self, height):
        self._height = height

    def area(self):
        return self.get_width() * self.get_height()

使用它,我们可以将其扩展为Square类。因为正方形与矩形略有不同,我们需要重写一些代码以允许正方形正确存在。

class Square(Rectangle):
    def __init__(self, width):
        self._width = width
        self._height = width

    def get_width(self):
        return self._width

    def set_width(self, width):
        self._width = width
        self._height = width

    def get_height(self):
        return self._height

    def set_height(self, height):
        self._height = height
        self._width = height

这看起来不错,但最终正方形不是矩形,因此我们添加了代码来强制这种情况起作用。

我读过的一个很好的类比是考虑类代表的鸭子和橡皮鸭。尽管可以将 Duck 类扩展为 Rubber Duck 类,但我们需要重写许多 Duck 功能以适应 Rubber Duck。例如,鸭子嘎嘎叫,但橡皮鸭不叫(好吧,也许它会吱吱叫),鸭子是活的,但橡皮鸭不是。

覆盖类中的大量代码以适应特定情况可能会导致维护问题。您为覆盖特定条件而添加的代码越多,您的代码就会变得越脆弱。

矩形与正方形情况的一种解决方案是创建一个名为Quadrilateral的接口,并在单独的Rectangle和Square 类中实现它。在这种情况下,我们允许类负责它们自己的数据,但强制要求某些方法足迹可用。

class QuadrilateralMeta(type):
    def __instancecheck__(self, instance):
        return self.__subclasscheck__(type(instance))

    def __subclasscheck__(self, subclass):
        return (hasattr(subclass, 'area') and callable(subclass.area)) \
          and (hasattr(subclass, 'get_height') and callable(subclass.get_height)) \
          and (hasattr(subclass, 'get_width') and callable(subclass.get_width)) \

class QuadrilateralInterface(metaclass=QuadrilateralMeta):
    pass

class Rectangle(QuadrilateralInterface):
    pass

class Square(QuadrilateralInterface):
    pass

这里的底线是,如果你发现你覆盖了很多代码,那么你的架构可能是错误的,你应该考虑 Liskov 替换原则。

接口隔离原则

这表明许多特定于客户端的接口优于一个通用接口。换句话说,不应强制类实现它们不使用的接口。

让我们以Worker接口为例。这定义了几种不同的方法,可以应用于典型开发机构的工作人员。

class WorkerMeta(type):
    def __instancecheck__(self, instance):
        return self.__subclasscheck__(type(instance))

    def __subclasscheck__(self, subclass):
        return (hasattr(subclass, 'take_break') and callable(subclass.take_break)) \
          and (hasattr(subclass, 'write_code') and callable(subclass.write_code)) \
          and (hasattr(subclass, 'call_client') and callable(subclass.call_client)) \
          and (hasattr(subclass, 'get_paid') and callable(subclass.get_paid))

class WorkerInterface(metaclass=WorkerMeta):
    pass

问题是因为这个接口太通用了,我们不得不在实现这个接口的类中创建方法来适应这个接口。

例如,如果我们创建一个Manager类,那么我们将被迫实现一个 write_code() 方法,因为这是接口所需要的。因为经理通常不编写代码,所以我们实际上无法在此方法中执行任何操作,因此我们只返回 false。

class Manager(WorkerInterface):
    def write_code(self):
        pass

此外,如果我们有一个实现Worker的Developer类,那么我们将被迫实现一个 call_client() 方法,因为这是接口所需要的。

class Developer(WorkerInterface):
    def call_client(self):
        pass

拥有一个臃肿的接口意味着必须实现什么都不做的方法。

正确的解决方案是将我们的界面拆分成单独的部分,每个部分处理特定的功能。在这里,我们从我们的通用Worker接口中分离出Coder和ClientFacer接口。

class WorkerMeta(type):
    def __instancecheck__(self, instance):
        return self.__subclasscheck__(type(instance))

    def __subclasscheck__(self, subclass):
        return (hasattr(subclass, 'take_break') and callable(subclass.take_break)) \
          and (hasattr(subclass, 'get_paid') and callable(subclass.get_paid))

class WorkerInterface(metaclass=WorkerMeta):
    pass


class ClientFacerMeta(type):
    def __instancecheck__(self, instance):
        return self.__subclasscheck__(type(instance))

    def __subclasscheck__(self, subclass):
        return (hasattr(subclass, 'call_client') and callable(subclass.call_client))

class ClientFacerInterface(metaclass=ClientFacerMeta):
    pass


class CoderMeta(type):
    def __instancecheck__(self, instance):
        return self.__subclasscheck__(type(instance))

    def __subclasscheck__(self, subclass):
        return (hasattr(subclass, 'write_code') and callable(subclass.write_code))

class CoderInterface(metaclass=CoderMeta):
    pass

有了这个,我们就可以实现我们的子类,而不必编写我们不需要的代码。所以我们的Developer和Manager类看起来像这样。

class Manager(WorkerInterface, ClientFacerInterface):
    pass

class Developer(WorkerInterface, CoderInterface):
    pass

拥有许多特定接口意味着我们不必编写代码来支持接口。

依赖倒置原则

也许是最简单的原则,它指出类应该依赖于抽象,而不是具体化。本质上,不依赖于具体类,依赖于接口。

以使用MysqlConnection类从数据库加载页面的PageLoader类为例,我们可以创建这些类,以便将连接类传递给PageLoader类的构造函数。

class mysqlConnection():
    def connect(self):
        pass

class PageLoader():
    def __init__(self, mysql_connection: MySqlConnection):
        self._mysql_connection = mysql_connection

这种结构意味着我们基本上只能在数据库层使用 MySQL。如果我们想将其换成不同的数据库适配器会怎样?我们可以扩展MySqlConnection类以创建到 Memcache 或其他东西的连接,但这会违反 Liskov 替换原则。可能会使用备用数据库管理器来加载页面,因此我们需要找到一种方法来执行此操作。

这里的解决方案是创建一个名为DbConnectionInterface的接口,然后在MySqlConnection类中实现这个接口。然后,我们不再依赖传递给PageLoader类的MySqlConnection对象,而是依赖任何实现DbConnectionInterface接口的类。

class DbConnectionMeta(type):
    def __instancecheck__(self, instance):
        return self.__subclasscheck__(type(instance))

    def __subclasscheck__(self, subclass):
        return (hasattr(subclass, 'connect') and callable(subclass.connect))

class DbConnectionInterface(metaclass=DbConnectionMeta):
    pass


class MySqlConnection(DbConnectionInterface):
    def connect(self):
        pass

class PageLoader():
    def __init__(self, db_connection: DbConnectionInterface):
        self._db_connection = db_connection

有了这个,我们现在可以创建一个MemcacheConnection类,只要它实现了DbConnectionInterface,我们就可以在PageLoader类中使用它来加载页面。

这种方法还迫使我们以这样一种方式编写代码,以防止不关心它的类中的特定实现细节。因为我们已经将MySqlConnection类传递给了PageLoader类,所以我们不应该在PageLoader类 中编写 SQL 查询。这意味着当我们传入MemcacheConnection对象时,它的行为方式与任何其他类型的连接类相同。

当考虑接口而不是类时,它迫使我们将特定域代码移出我们的PageLoader类并移入MySqlConnection类。

如何发现它?

一个更大的问题可能是,如果您需要将 SOLID 原则应用于您的代码,或者您正在编写的代码不是 SOLID,您如何才能发现。

了解这些原则只是成功的一半,您还需要知道什么时候应该退后一步并考虑应用 SOLID 原则。我想出了一个快速列表,列出了您需要关注的“告诉”,表明您的代码可能需要重新编写。

  • 您正在编写大量“if”语句来处理目标代码中的不同情况。
  • 你写了很多代码,实际上并没有做任何事情只是为了满足界面设计。
  • 你一直打开同一个类来更改代码。
  • 您在与该类没有任何关系的类中编写代码。例如,将 SQL 查询放在数据库连接类之外的类中。

结论

SOLID 不是一种完美的方法,它可能会导致包含许多移动部件的复杂应用程序,并且偶尔会导致编写代码以备不时之需。使用 SOLID 意味着编写更多类并创建更多接口,但许多现代 IDE 将通过自动代码完成来解决该问题。

也就是说,它确实会迫使您分离关注点、考虑继承、防止重复代码并谨慎编写应用程序。毕竟,考虑对象如何在应用程序中组合在一起是面向对象代码的全部内容。

到此这篇关于Python中的SOLID原则详解的文章就介绍到这了,更多相关Python SOLID原则内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

相关文章