python celery 模块

2023-01-31 02:01:25 python celery 模块

Celery是基于python开发的一个分布式任务队列框架,支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度
python celery 模块
Celery是典型的生产生-消费者模式,主要由三部分组成:broker(消息队列)、workers(消费者:处理任务)、backend(存储结果)
1.编写任务代码task.py
from celery import Celery

app = Celery('tasks',broker='aMQp://guest@localhost//', backend='Redis://localhost:6379/0')

@app.task
def add(x, y):
return x + y

当函数使用”@app.task”修饰后,即为可被Celery调度的任务
2.启动workers 命令 celery worker -A tasks --loglevel=info --concurrency=5
3.调用任务

result=add.delay(2, 5)
result.ready()
result.get(timeout=1)

4.配置文件
单个参数配置:
app.conf.CELERY_BROKER_URL = 'amqp://guest@localhost//'
app.conf.CELERY_RESULT_BACKEND = 'redis://localhost:6379/0'
多个参数配置:
app.conf.update(
CELERY_BROKER_URL = 'amqp://guest@localhost//',
CELERY_RESULT_BACKEND = 'redis://localhost:6379/0'
)

从配置文件中获取:

先把配置存入配置文件中'celeryconfig.py'

BROKER_URL='amqp://guest@localhost//'
CELERY_RESULT_BACKEND='redis://localhost:6379/0'

导入到celery 对象中app.config_from_object('celeryconfig')
我们之前调用任务使用了”delay()”方法,它其实是对”apply_async()”方法的封装,
使得你只要传入任务所需的参数即可
关于序列化
Celery默认序列化方式是”JSON”,指定序列化
app = Celery('tasks', broker='...', task_serializer='yaml')

app.conf.update(
CELERY_TASK_SERIALIZER='pickle',
CELERY_RESULT_SERIALIZER='json',
)

@app.task
def add(x, y):
...

add.apply_async((2, 5), serializer='json')


django + celery 实现任务的异步处理
1.Django WEB中从一个Http请求发起,到获得响应返回html页面的流程大致如下:http请求发起 -- http handling(request解析) -- url mapping(url正则匹配找到对应的View) -- 在View中进行逻辑的处理、数据计算(包括调用Model类进行数据库的增删改查)--将数据推送到template,返回对应的template/response
同步请求:所有逻辑处理、数据计算任务在View中处理完毕后返回response。在View处理任务时用户处于等待状态,直到页面返回结果
异步请求:View中先返回response,再在后台处理任务。用户无需等待,可以继续浏览网站。当任务处理完成时,我们可以再告知用户
2.建立消息队列
消息队列可以使用RabbitMQ、Redis 等
3.安装djanGo-celery
pip install celery django-celery
4.配置settings.py
import djcelery
djcelery.setup_loader()
BROKER_URL = 'django://' # 使用django做broker
CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler' # 定时任务.
CELERY_RESULT_BACKEND = 'djcelery.backends.database:DatabaseBackend' # 需要跟踪任务的状态时保存结果和状态
CELERY_ENABLE_UTC = False # 不用UTC.
CELERY_TIMEZONE = 'Asia/Shanghai' # 指定上海时区
CELERY_ACCEPT_CONTENT = ['pickle', 'json', 'msgpack', 'yaml'] # 允许的格式
CELERY_TASK_SERIALIZER = 'json'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_IGNORE_RESULT = True

INSTALLED_APPS = [
'djcelery',# 新增
'kombu.transport.django', # 新增kombu.transport.django则是基于Django的broker
]

其中,当djcelery.setup_loader()运行时,Celery便会去查看INSTALLD_APPS下包含的所有app目录中的tasks.py文件,找到标记为task的方法,将它们注册为celery task
5.在项目 mysite 下新建celery.py
from future import absolute_import
import os
from celery import Celery
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings')
from django.conf import settings # noqa
app = Celery('mysite')
app.config_from_object('django.conf:settings')
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

@app.task(bind=True)
def debug_task(self):
print('Request: {0!r}'.fORMat(self.request))

6.在应用celery_project下新建tasks.py

from future import absolute_import
from celery import shared_task
import time

@shared_task(track_started=True)
def add(x, y):
time.sleep(30)
return x + y

在tasks.py中我们就可以编码实现我们需要执行的任务逻辑,在开始处import task,然后在要执行的任务方法开头用上装饰器@task。需要注意的是,与一般的.py中实现celery不同,tasks.py必须建在各app的根目录下,且不能随意命名
6.生产任务
在需要执行该任务的View中,通过test.delay的方式来创建任务,并送入消息队列
def produce():
a =1
b =2
r = test.delay(a,b)
7.启动work
#先启动服务器 python manage.py runserver
#再启动worker celery worker -A mysite -c 4 --loglevel=info

相关文章