用 Python 实现的线程池
为了提高程序的效率,经常要用到多线程,尤其是io等需要等待外部响应的部分。线程的创建、销毁和调度本身是有代价的,如果一个线程的任务相对简单,那这些时间和空间开销就不容忽视了,此时用线程池就是更好的选择,即创建一些线程然后反复利用它们,而不是在完成单个任务后就结束。
下面是用python实现的通用的线程池代码:
- import Queue, threading, sys
- from threading import Thread
- import time,urllib
- # working thread
- class Worker(Thread):
- worker_count = 0
- def __init__( self, workQueue, resultQueue, timeout = 0, **kwds):
- Thread.__init__( self, **kwds )
- self.id = Worker.worker_count
- Worker.worker_count += 1
- self.setDaemon( True )
- self.workQueue = workQueue
- self.resultQueue = resultQueue
- self.timeout = timeout
- def run( self ):
- ''' the get-some-work, do-some-work main loop of worker threads '''
- while True:
- try:
- callable, args, kwds = self.workQueue.get(timeout=self.timeout)
- res = callable(*args, **kwds)
- print "worker[%2d]: %s" % (self.id, str(res) )
- self.resultQueue.put( res )
- except Queue.Empty:
- break
- except :
- print 'worker[%2d]' % self.id, sys.exc_info()[:2]
- class WorkerManager:
- def __init__( self, num_of_workers=10, timeout = 1):
- self.workQueue = Queue.Queue()
- self.resultQueue = Queue.Queue()
- self.workers = []
- self.timeout = timeout
- self._recruitThreads( num_of_workers )
- def _recruitThreads( self, num_of_workers ):
- for i in range( num_of_workers ):
- worker = Worker( self.workQueue, self.resultQueue, self.timeout )
- self.workers.append(worker)
- def start(self):
- for w in self.workers:
- w.start()
- def wait_for_complete( self):
- # ...then, wait for each of them to terminate:
- while len(self.workers):
- worker = self.workers.pop()
- worker.join( )
- if worker.isAlive() and not self.workQueue.empty():
- self.workers.append( worker )
- print "All jobs are are completed."
- def add_job( self, callable, *args, **kwds ):
- self.workQueue.put( (callable, args, kwds) )
- def get_result( self, *args, **kwds ):
- return self.resultQueue.get( *args, **kwds )
Worker类是一个工作线程,不断地从workQueue队列中获取需要执行的任务,执行之,并将结果写入到resultQueue中,这里的workQueue和resultQueue都是现成安全的,其内部对各个线程的操作做了互斥。当从workQueue中获取任务超时,则线程结束。
WorkerManager负责初始化Worker线程,提供将任务加入队列和获取结果的接口,并能等待所有任务完成。
一个典型的测试例子如下,它用10个线程去下载一个固定页面的内容,实际应用时应该是执行不同的任务。
- def test_job(id, sleep = 0.001 ):
- try:
- urllib.urlopen('https://www.gmail.com/').read()
- except:
- print '[%4d]' % id, sys.exc_info()[:2]
- return id
- def test():
- import Socket
- socket.setdefaulttimeout(10)
- print 'start testing'
- wm = WorkerManager(10)
- for i in range(500):
- wm.add_job( test_job, i, i*0.001 )
- wm.start()
- wm.wait_for_complete()
- print 'end testing'
相关文章