ElasticSearch写入流程实例解析

2022-11-13 16:11:34 写入 实例 解析

一、前言

介绍我们在前面已经知道ElasticSearch底层的写入是基于lucence依进行doc写入的。ElasticSearch作为一款分布式系统,在写入数据时还需要考虑很多重要的事项,比如:可靠性、原子性、一致性、实时性、隔离性、性能等多个指标。

ElasticSearch是如何做到的呢?下面我们针对ElasticSearch的写入进行分析。

二、lucence写

2.1 增删改

ElasticSearch拿到一个doc后调用lucence的api进行写入的。

 public long aDDDocument();
 public long updateDocuments();
 public long deleteDocuments();

如上面的代码所示,我们使用lucence的上面的接口就可以完成文档的增删改操作。在lucence中有一个核心的类IndexWriter负责数据写入和索引相关的工作。

//1. 初始化indexwriter对象
IndexWriter writer = new IndexWriter(new Directory(Paths.get("/index")), new IndexWriterConfig());
//2. 创建文档
Document doc = new Document();
doc.add(new StringField("empName", "王某某", Field.Store.YES));
doc.add(new TextField("content", "操作了某菜单", Field.Store.YES));
//3. 添加文档
writer.addDocument(doc);
//4. 提交
writer.commit();

以上代码演示了最基础的lucence的写入操作,主要涉及到几个关键点: 初始化: Directory是负责持久化的,他的具体实现有很多,有本地文件系统、数据库分布式文件系统等待,ElasticSearch默认的实现是本地文件系统。 Document: Document就是es中的文档,FiledType定义了很多索引类型。这里列举几个常见的类型:

  • stored: 字段原始内容存储 
  • indexOptions:(NONE/DOCS/DOCS_AND_FREQS/DOCS_AND_FREQS_AND_POSITIONS/DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS),倒排索引的选项,存储词频、位置信息等。
  • docValuesType: 正排索引,建立一个docid到field的的一个列存储。
  • 一些其它的类型

IndexWriter:IndexWriter在doc进行commit后,才会被持久化并且是可搜索的。IndexWriterConfig:IndexWriterConfig负责了一些整体的配置参数,并提供了方便使用者进行功能定制的参数: 

  • Similarity: 这个是搜索的核心参数,实现了这个接口就能够进行自定义算分。lucence默认实现了前面文章提到的TF-IDF、BM25算法。 
  • MergePolicy: 合并的策略。我们知道ElasticSearch会进行合并,从而减少段的数量。 
  • IndexerThreadPool: 线程池的管理。
  • FlushPolicy: flush的策略。
  • Analyzer: 定制分词器。
  • IndexDeletionPolicy: 提交管理。

PS:在ElasticSearch中,为了支持分布式的功能,新增了一些系统默认字段:

  • _uid,主键,在写入的时候,可以指定该Doc的ID值,如果不指定,则系统自动生成一个唯一的UUID值。
  • _version,版本字段,version来保证对文档的变更正确的执行,更新文档时有用。 
  • _source,原始信息,如果后面维护不需要reindex索引可以关闭该字段,从而节省空间 
  • _routiong,路由字段。 
  • 其它的字段

2.2. 并发模型

上面我们知道indexwriter负责了ElasticSearch索引增删改查。那它具体是如何管理的呢?

2.2.1. 基本操作

关键点:  

  • DocumentsWriter处理写请求,并分配具体的线程DocumentsWriterPerThread
  • DocumentsWriterPerThread具有独立内存空间,对文档进行处理DocumentsWriter触发一些flush的操作。
  • DocumentsWriterPerThread中的内存In-memory buffer会被flush成独立的segement文件。 
  • 对于这种设计,多线程的写入,针对纯新增文档的场景,所有数据都不会有冲突,非常适合隔离的数据写入方式

2.2.2 更新

Lucene的update和数据库的update不太一样,Lucene的更新是查询后删除再新增。  

  • 分配一个操作线程 
  • 在线程里执行删除 
  • 在线程里执行新增

2.2.3 删除

上面已经说了,在update中会删除,普通的也会删除,lucence维护了一个全局的删除表,每个线程也会维护一个删除表,他们双向同步数据

  • update的删除会先在内部记录删除的数据,然后同步到全局表中。
  • delete的删除会作用在Global级别,后异步同步到线程中。
  • Lucene Segment内部,数据实际上其实并不会被真正删除,Segment内部会维持一个文件记录,哪些是docid是删除的,在merge时,相应的doc文档会被真正的删除。

2.2.4 flush和commit

每一个WriterPerThread线程会根据flush策略将文档形成segment文件,此时segment的文件还是不可见的,需要indexWriter进行commit后才能被搜索。 这里需要注意:ElasticSearch的refresh对应于lucene的flush,ElasticSearch的flush对应于lucene的commit,ElasticSearch在refresh时通过其它方式使得segment变得可读。

2.2.5 merge

merge是对segment文件合并的动作,这样可以提升查询的效率并且可以真正的删除的文档。

小结

在这里我们稍微总结一下,一个ElasticSearch索引的一个分片对应一个完整的lucene索引, 而一个lucene索引对应多个segment。我们在构建同一个lucene索引的时候, 可能有多个线程在并发构建同一个lucene索引, 这个时候每个线程会对应一个DocumentsWriterPerThread, 而每个 DocumentsWriterPerThread会对应一个index buffer. 在执行了flush以后, 一个 DocumentsWriterPerThread会生成一个segment。

三、 ElasticSearch的写

3.1. 宏观看ElasticSearch请求

在前面的文章已经讨论了写入的流程ElasticSearch

图片来自官网 当写入文档的时候,根据routing规则,会将文档发送至特定的Shard中建立lucence。

  • 介绍在Primary Shard上执行成功后,再从Primary Shard上将请求同时发送给多个Replica Shardgit 
  • 请求在多个Replica Shard上执行成功并返回给Primary Shard后,写入请求执行成功,返回结果给客户端

注意上面的写入延时=主分片延时+max(Replicas Write),即写入性能如果有副本分片在,就至少是写入两个分片的延时延时之和。

3.2. 详细流程

3.2.1 协调节点内部流程

如上图所示:

  • 协调节点会对请求检查放在第一位,如果如果有问题就直接拒绝。主要有长度校验、必传参数、类型、版本、id等等。
  • pipeline,用户可以自定义设置处理器,比如可以对字段切割或者新增字段,还支持一些脚本语言,可以查看官方文档编写。
  • 如果允许自动创建索引(默认是允许的),会先创建索引,创建索引会发送到主节点上,必须等待master成功响应后,才会进入下一流程。
  • 请求预处理,比如是否会自动生成id、路由,获取到整个集群的信息了,并检查集群状态,比如集群master不存在,都会被拒绝。
  • 构建sharding请求,比如这一批有5个文档, 如果都是属于同一个分片的,那么就会合并到一个请求里,会根据路由算法将文档分类放到一个map里 Map> requestsByShard = new HashMap<>();路由算法默认是文档id%分片数。
  • 转发请求,有了分片会根据前面的集群状态来确定具体的ElasticSearch节点ip,然后并行去请求它们。

3.2.2 主分片节点流程*

 写入(index)

该部分是elasticsarch的核心写入流程,在前面的文章也介绍了,请求到该节点会最终调用lucence的方法,建立lucence索引。其中主要的关键点:

  • ElasticSearch节点接收index请求,存入index buffer,同步存入磁盘translog后返回索引结果
  • Refresh定时将lucence数据生成segment,存入到操作系统缓存,此时没有fsync,清空lucence,此时就可以被ElasticSearch查询了,如果index buffer占满时,也会触发refresh,默认为JVM的10%。
  • Flush定时将缓存中的segments写入到磁盘,删除translog。如果translog满时(512m),也会触发flush。
  • 如果数据很多,segment的也很多,同时也可能由删除的文档,ElasticSearch会定期将它们合并。

update

  • 读取同id的完整Doc, 记录版本为version1。
  • 将version1的doc和update请求的Doc合并成一个Doc,更新内存中的VersionMap。获取到完整Doc后。进入后续的操作。
  • 后面的操作会加
  • 第二次从versionMap中读取该doc的的最大版本号version2,这里基本都会从versionMap中获取到。
  • 检查版本是否冲突,判断版本是否一致(冲突),如果发生冲突,则回到第一步,重新执行查询doc合并操作。如果不冲突,则执行最新的添加doc请求。
  • 介绍在add Doc时,首先将Version + 1得到V3,再将Doc加入到Lucene中去,Lucene中会先删同id下的已存在doc id,然后再增加新Doc。写入Lucene成功后,将当前V3更新到versionMap中。
  • 释放锁,更新流程就结束了。

介绍其实就是乐观锁的机制,每次更新一次版本号加 1 ,不像关系式数据库有事物,你在更新数据,可能别人也在更新的话,就把你的给覆盖了。你要更新的时候,先查询出来,记住版本号,在更新的时候最新的版本号和你查询的时候不一样,说明别人先更新了。你应该读取最新的数据之后再更新。写成功后,会转发写副本分片,等待响应,并最后返回数据给协调节点。具体的流程:

  • 校验,校验写的分片是否存在、索引的状态是否正常等等。
  • 是否需要延迟执行,如果是则会放入到队列里等待。
  • 校验活跃的分片数是否存在,不足则拒绝写入。
public boolean enoughShardsActive(final int activeShardCount) {
  if (this.value < 0) {
    throw new IllegalStateException("not enough infORMation to resolve to shard count");
  }
  if (activeShardCount < 0) {
    throw new IllegalArgumentException("activeShardCount cannot be negative");
  }
  return this.value <= activeShardCount;
}

为什么会要校验这个活跃的分片数呢?

  • ElasticSearch的索引层有个一waitforactiveshards参数代表写入的时候必须的分片数,默认是1。如果一个索引是每个分片3个副本的话,那么一共有4个分片,请求时至少需要校验存活的分片数至少为1,相当于提前校验了。如果对数据的可靠性要求很高,就可以调高这个值,必须要达到这个数量才会写入。
  • 调用lucence写入doc.
  • 写入translog日志
  • 写入副本分片,循环处理副本请求,会传递一些信息。在这里需要注意,它们是异步发送到副本分片上的,并且需要全部等待响应结果,直至超时。
  • 接着上一步,如果有副本分片失败的情况,会把这个失败的分片发送给master,master会更新集群状态,这个副本分片会从可分配列表中移除。 

发送请求至副本

@Override
public void tryAction(ActionListener<ReplicaResponse> listener) {
  replicasProxy.performOn(shard, replicaRequest, primaryTerm, globalCheckpoint, maxSeqNoOfUpdatesOrDeletes, listener);
}

等待结果

privatevoid decPendingAndFinishIfNeeded() {
  assert pendingActions.get() > 0 : "pending action count Goes below 0 for request [" + request + "]";
  if (pendingActions.decrementAndGet() == 0) {
    finish();
  }
}

在以前的版本中,其实是异步请求副本分片的,后来觉得丢失数据的风险很大,就改成同步发送了,即Primary等Replica返回后再返回给客户端。如果副本有写入失败的,ElasticSearch会进行一些重试,但最终并不强求一定要在多少个节点写入成功。在返回的结果中,会包含数据在多少个shard中写入成功了,多少个失败了,如果有副本上传失败,会将失败的副本上报至Master。

PS:ElasticSearch的数据副本模型和kafka副本很相似,都是采用的是ISR机制。即:ES里面有一个:in-sync copies概念,主分片会在索引的时候会同步数据至in-sync copies里面所有的节点,然后再返回ACK给client。而in-sync copies里面的节点是动态变化的,如果出现极端情况,在in-sync copies列表中只有主分片一个的话,这里很容易出现SPOF问题,这个是在ElasticSearch中是如何解决的呢?

就是依靠上面我们分析的wait_for_active_shards参数来防止SPOF,如果配置index的wait_for_active_shards=3就会提前校验必须要有三个活跃的分片才会进行同步,否则拒绝请求。对于可靠性要求高的索引可以提升这个值。

PS:为什么是先写lucence再写入translog呢,这是因为写入lucence写入时会有数据检查,有可能会写入失败,这个是发生在内存之中的,如果先写入磁盘的translog的话,还需要回退日志,比较麻烦

3.2.3 副本分片节点流程8

这个过程和主分片节点的流程基本一样,有些校验可能略微不同,最终都会写入lucence索引。

四、总结

本文介绍了ElasticSearch的写入流程和一些比较详细的机制,最后我们总结下开头我们提出的问题,一个分布式系统需要满足很多特性,大部分特性都能够在ElasticSearch中得到满足。

  • 可靠性:lucence只是个工具,ElasticSearch中通过自己设计的副本来保证了节点的容错,通过translog日志保证宕机后能够恢复。通过这两套机制提供了可靠性保障。
  • 一致性:ElasticSearch实现的是最终一致性,副本和主分片在同一时刻读取的数据可能不一致。比如副本的refresh频率和主分片的频率可能不一样。
  • 高性能:ElasticSearch通过多种手段来提升性能,具体包括:
  • lucence自身独立线程维护各自的Segment,多线程需要竞争的资源更少,性能更好。 
  • update等操作使用versionMap缓存,减少io.
  • refresh至操作系统缓存。
  • 原子性、隔离性:使用版本的乐观锁机制保证的。
  • 实时性:ElasticSearch设计的是近实时的,如果同步进行refresh、flush将大幅降低性能,所以是”攒一部分数据“再刷入磁盘,不过实时写入的tranlog日志还是可以实时通过id查到的。

以上就是ElasticSearch写入流程实例解析的详细内容,更多关于ElasticSearch写入流程的资料请关注其它相关文章!

相关文章