springboot 整合 dubbo 的实现组聚合详情
消费者
yml 文件配置:
dubbo:
application:
name: dubbo-gateway
reGIStry:
address: ZooKeeper://127.0.0.1:2181
server: true
provider:
timeout: 3000
protocol:
name: dubbo
port: 20881
controller 类:
@RestController
@RequestMapping(value = "/order")
@Slf4j
public class OrderController {
@DubboReference(check = false, group = "2017,2018", merger = "page")
private OrderService orderService;
@PostMapping("/getOrderInfo")
public ResponseVO getOrderInfo(@RequestParam(name = "nowPage", required = false, defaultValue = "1") Integer nowPage,
@RequestParam(name = "pageSize", required = false, defaultValue = "5") Integer pageSize) {
// 获取当前登陆人的信息
String userId = CurrentUser.getUserId();
// 使用当前登陆人获取已经购买的订单
Page<OrderVO> page = new Page<>(nowPage,pageSize);
if(userId != null && userId.trim().length()>0){
Page<OrderVO> result = orderService.getOrderByUserId(Integer.parseInt(userId), page);
return ResponseVO.success(nowPage, (int) result.getPages(),"",result.getRecords());
}else{
return ResponseVO.serviceFail("用户未登陆");
}
}
自定义聚合策略
在 dubbo-3.0.9.jar!/META-INF/dubbo/internal/ 目录下有一个 org.apache.dubbo.rpc.cluster.Merger 文件,文件内容如下:
map=org.apache.dubbo.rpc.cluster.merger.MapMerger
set=org.apache.dubbo.rpc.cluster.merger.SetMerger
list=org.apache.dubbo.rpc.cluster.merger.ListMerger
byte=org.apache.dubbo.rpc.cluster.merger.ByteArrayMerger
char=org.apache.dubbo.rpc.cluster.merger.CharArrayMerger
short=org.apache.dubbo.rpc.cluster.merger.ShortArrayMerger
int=org.apache.dubbo.rpc.cluster.merger.IntArrayMerger
long=org.apache.dubbo.rpc.cluster.merger.LongArrayMerger
float=org.apache.dubbo.rpc.cluster.merger.FloatArrayMerger
double=org.apache.dubbo.rpc.cluster.merger.DoubleArrayMerger
boolean=org.apache.dubbo.rpc.cluster.merger.BooleanArrayMerger
其中申明了 dubbo 定义的聚合策略。在指定dubbo 聚合策略时,可使用 dubbo 提供的聚合策略,也可以使用自定义的聚合策略。
如何自定义 dubbo 聚合策略?
在 resources 目录下创建以下目录及文件(注意:目录及文件名称不可变)。
org.apache.dubbo.rpc.cluster.Merger 文件内容如下:
# 自定义聚合策略
page=com.stylefeng.guns.gateway.config.PageMerger
自定义聚合策略类:
package com.stylefeng.guns.gateway.config;
import com.baomidou.mybatisplus.plugins.Page;
import org.apache.dubbo.rpc.cluster.Merger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
public class PageMerger implements Merger<Page> {
@Override
public Page merge(Page... items) {
Page<Object> page = new Page<>();
List<Object> records = new ArrayList<>();
AtomicInteger total = new AtomicInteger();
Arrays.stream(items).forEach(item -> {
records.addAll(item.getRecords());
total.addAndGet((int) item.getPages());
});
page.setRecords(records);
page.setSize(total.get());
return page;
}
}
提供者
yml 文件配置:
dubbo:
application:
name: dubbo-order
registry:
address: zookeeper://127.0.0.1:2181
server: true
provider:
timeout: 3000
protocol:
name: dubbo
port: 20885
接口及其实现
OrderService 接口:
public interface OrderService {
Page<OrderVO> getOrderByUserId(Integer userId, Page<OrderVO> page);
}
OrderServiceImplA 实现类:
@DubboService(group = "2017")
@Slf4j
public class OrderServiceImplA implements OrderService {
@Autowired
private MoocOrder2017TMapper moocOrder2017TMapper;
@Override
public Page<OrderVO> getOrderByUserId(Integer userId, Page<OrderVO> page) {
Page<OrderVO> result = new Page<>();
if(userId == null){
log.error("订单查询业务失败,用户编号未传入");
return null;
}else{
List<OrderVO> ordersByUserId = moocOrder2017TMapper.getOrdersByUserId(userId,page);
if(ordersByUserId==null && ordersByUserId.size()==0){
result.setTotal(0);
result.setRecords(new ArrayList<>());
return result;
}else{
// 获取订单总数
EntityWrapper<MoocOrder2017T> entityWrapper = new EntityWrapper<>();
entityWrapper.eq("order_user",userId);
Integer counts = moocOrder2017TMapper.selectCount(entityWrapper);
// 将结果放入Page
result.setTotal(counts);
result.setRecords(ordersByUserId);
return result;
}
}
}
}
OrderServiceImplB 实现类:
@DubboService(group = "2018")
@Slf4j
public class OrderServiceImplB implements OrderService {
@Autowired
private MoocOrder2018TMapper moocOrder2018TMapper;
@Override
public Page<OrderVO> getOrderByUserId(Integer userId, Page<OrderVO> page) {
Page<OrderVO> result = new Page<>();
if(userId == null){
log.error("订单查询业务失败,用户编号未传入");
return null;
}else{
List<OrderVO> ordersByUserId = moocOrder2018TMapper.getOrdersByUserId(userId,page);
if(ordersByUserId==null && ordersByUserId.size()==0){
result.setTotal(0);
result.setRecords(new ArrayList<>());
return result;
}else{
// 获取订单总数
EntityWrapper<MoocOrder2018T> entityWrapper = new EntityWrapper<>();
entityWrapper.eq("order_user",userId);
Integer counts = moocOrder2018TMapper.selectCount(entityWrapper);
// 将结果放入Page
result.setTotal(counts);
result.setRecords(ordersByUserId);
return result;
}
}
}
}
表结构及数据
表结构:
CREATE TABLE `mooc_order_2017_t` (
`UUID` varchar(100) DEFAULT NULL COMMENT '主键编号',
`cinema_id` int DEFAULT NULL COMMENT '影院编号',
`field_id` int DEFAULT NULL COMMENT '放映场次编号',
`film_id` int DEFAULT NULL COMMENT '电影编号',
`seats_ids` varchar(50) DEFAULT NULL COMMENT '已售座位编号',
`seats_name` varchar(200) DEFAULT NULL COMMENT '已售座位名称',
`film_price` double DEFAULT NULL COMMENT '影片售价',
`order_price` double DEFAULT NULL COMMENT '订单总金额',
`order_time` timestamp NULL DEFAULT CURRENT_TIMESTAMP COMMENT '下单时间',
`order_user` int DEFAULT NULL COMMENT '下单人',
`order_status` int DEFAULT '0' COMMENT '0-待支付,1-已支付,2-已关闭'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT='订单信息表';
CREATE TABLE `mooc_order_2018_t` (
`UUID` varchar(100) DEFAULT NULL COMMENT '主键编号',
`cinema_id` int DEFAULT NULL COMMENT '影院编号',
`field_id` int DEFAULT NULL COMMENT '放映场次编号',
`film_id` int DEFAULT NULL COMMENT '电影编号',
`seats_ids` varchar(50) DEFAULT NULL COMMENT '已售座位编号',
`seats_name` varchar(200) DEFAULT NULL COMMENT '已售座位名称',
`film_price` double DEFAULT NULL COMMENT '影片售价',
`order_price` double DEFAULT NULL COMMENT '订单总金额',
`order_time` timestamp NULL DEFAULT CURRENT_TIMESTAMP COMMENT '下单时间',
`order_user` int DEFAULT NULL COMMENT '下单人',
`order_status` int DEFAULT '0' COMMENT '0-待支付,1-已支付,2-已关闭'
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC COMMENT='订单信息表';
表数据:
INSERT INTO `guns_rest`.`mooc_order_2017_t`(`UUID`, `cinema_id`, `field_id`, `film_id`, `seats_ids`, `seats_name`, `film_price`, `order_price`, `order_time`, `order_user`, `order_status`) VALUES ('329123812gnfn31', 1, 1, 2, '1,2,3,4', '第一排1座,第一排2座,第一排3座,第一排4座', 63.2, 126.4, '2017-05-03 12:13:42', 2, 0);
INSERT INTO `guns_rest`.`mooc_order_2017_t`(`UUID`, `cinema_id`, `field_id`, `film_id`, `seats_ids`, `seats_name`, `film_price`, `order_price`, `order_time`, `order_user`, `order_status`) VALUES ('310bb3c3127a4551ad72f2f3e53333c7', 1, 1, 2, '9,10', '第一排9座,第一排10座', 60, 120, '2022-07-20 14:25:42', 2, 0);
INSERT INTO `guns_rest`.`mooc_order_2018_t`(`UUID`, `cinema_id`, `field_id`, `film_id`, `seats_ids`, `seats_name`, `film_price`, `order_price`, `order_time`, `order_user`, `order_status`) VALUES ('124583135asdf81', 1, 1, 2, '1,2,3,4', '第一排1座,第一排2座,第一排3座,第一排4座', 63.2, 126.4, '2018-02-12 11:53:42', 2, 0);
演示:
到此这篇关于SpringBoot 整合 dubbo 的实现组聚合详情的文章就介绍到这了,更多相关springboot 整合 dubbo内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
相关文章