推荐系统遇上深度学习(九)--评价指标AUC原理及实践
55d
引言
CTR问题我们有两种角度去理解,一种是分类的角度,即将点击和未点击作为两种类别。另一种是回归的角度,将点击和未点击作为回归的值。不管是分类问题还是回归问题,一般在预估的时候都是得到一个[0,1]之间的概率值,代表点击的可能性的大小。
如果将CTR预估问题当作回归问题,我们经常使用的损失函数是MSE;如果当作二分类问题,我们经常使用的损失函数是LogLoss。而对于一个训练好的模型,我们往往需要评估一下模型的效果,或者说泛化能力,MSE和LogLoss当然也可以作为我们的评价指标,但除此之外,我们常用的还是AUC。
想到这里,我想到一个问题,AUC是否可以直接用作损失函数去优化呢?可以参考知乎的文章,还没太搞懂:https://www.zhihu.com/question/39840928
说了这么多,我们还不知道AUC是什么呢?不着急,我们从二分类的评估指标慢慢说起,提醒一下,本文二分类的类别均为0和1,1代表正例,0代表负例。
1、从二分类评估指标说起
1.1 混淆矩阵
我们首先来看一下混淆矩阵,对于二分类问题,真实的样本标签有两类,我们学习器预测的类别有两类,那么根据二者的类别组合可以划分为四组,如下表所示:
上表即为混淆矩阵,其中,行表示预测的label值,列表示真实label值。TP,FP,FN,TN分别表示如下意思:
TP(true positive):表示样本的真实类别为正,后预测得到的结果也为正;
FP(false positive):表示样本的真实类别为负,后预测得到的结果却为正;
FN(false negative):表示样本的真实类别为正,后预测得到的结果却为负;
TN(true negative):表示样本的真实类别为负,后预测得到的结果也为负.
可以看到,TP和TN是我们预测准确的样本,而FP和FN为我们预测错误的样本。
1.2 准确率Accruacy
准确率表示的是分类正确的样本数占样本总数的比例,假设我们预测了10条样本,有8条的预测正确,那么准确率即为80%。
用混淆矩阵计算的话,准确率可以表示为:
虽然准确率可以在一定程度上评价我们的分类器的性能,不过对于二分类问题或者说CTR预估问题,样本是极其不平衡的。对于大数据集来说,标签为1的正样本数据往往不足10%,那么如果分类器将所有样本判别为负样本,那么仍然可以达到90%以上的分类准确率,但这个分类器的性能显然是非常差的。
1.3 率Precision和召回率Recall
为了衡量分类器对正样本的预测能力,我们引入了率Precision和召回率Recall。
率表示预测结果中,预测为正样本的样本中,正确预测为正样本的概率;
召回率表示在原始样本的正样本中,后被正确预测为正样本的概率;
二者用混淆矩阵计算如下:
率和召回率往往是一对矛盾的指标。在CTR预估问题中,预测结果往往表示会被点击的概率。如果我们对所有的预测结果进行降序排序,排在前面的是学习器认为可能被点击的样本,排在后面的是学习期认为不可能被点击的样本。
如果我们设定一个阈值,在这个阈值之上的学习器认为是正样本,阈值之下的学习器认为是负样本。可以想象到的是,当阈值很高时,预测为正样本的是分类器有把握的一批样本,此时率往往很高,但是召回率一般较低。相反,当阈值很低时,分类器把很多拿不准的样本都预测为了正样本,此时召回率很高,但是率却往往偏低。
1.4 F-1 Score
为了折中率和召回率的结果,我们又引入了F-1 Score,计算公式如下:
对于F1 Score有很多的变化形式,感兴趣的话大家可以参考一下周志华老师的西瓜书,我们这里就不再介绍了。
1.5 ROC与AUC
在许多分类学习器中,产生的是一个概率预测值,然后将这个概率预测值与一个提前设定好的分类阈值进行比较,大于该阈值则认为是正例,小于该阈值则认为是负例。如果对所有的排序结果按照概率值进行降序排序,那么阈值可以将结果截断为两部分,前面的认为是正例,后面的认为是负例。
我们可以根据实际任务的需要选取不同的阈值。如果重视率,我们可以设定一个很高的阈值,如果更重视召回率,可以设定一个很低的阈值。
到这里,我们会抛出两个问题:
1)设定阈值然后再来计算率,召回率和F1-Score太麻烦了,这个阈值到底该设定为多少呢?有没有可以不设定阈值来直接评价我们的模型性能的方法呢?
2)排序结果很重要呀,不管预测值是多少,只要正例的预测概率都大于负例的就好了呀。
没错,ROC和AUC便可以解决我们上面抛出的两个问题。
ROC全称是“受试者工作特征”,(receiver operating characteristic)。我们根据学习器的预测结果进行排序,然后按此顺序逐个把样本作为正例进行预测,每次计算出两个重要的值,分别以这两个值作为横纵坐标作图,就得到了ROC曲线。
这两个指标是什么呢?是率和召回率么?并不是的,哈哈。
ROC曲线的横轴为“假正例率”(True Positive Rate,TPR),又称为“假阳率”;纵轴为“真正例率”(False Positive Rate,FPR),又称为“真阳率”,
假阳率,简单通俗来理解就是预测为正样本但是预测错了的可能性,显然,我们不希望该指标太高。
真阳率,则是代表预测为正样本但是预测对了的可能性,当然,我们希望真阳率越高越好。
ROC计算过程如下:
1)首先每个样本都需要有一个label值,并且还需要一个预测的score值(取值0到1);
2)然后按这个score对样本由大到小进行排序,假设这些数据位于表格中的一列,从上到下依次降序;
3)现在从上到下按照样本点的取值进行划分,位于分界点上面的我们把它归为预测为正样本,位于分界点下面的归为负样本;
4)分别计算出此时的TPR和FPR,然后在图中绘制(FPR, TPR)点。
说这么多,不如直接看图来的简单:
AUC(area under the curve)就是ROC曲线下方的面积,如下图所示,阴影部分面积即为AUC的值:
AUC量化了ROC曲线表达的分类能力。这种分类能力是与概率、阈值紧密相关的,分类能力越好(AUC越大),那么输出概率越合理,排序的结果越合理。
在CTR预估中,我们不仅希望分类器给出是否点击的分类信息,更需要分类器给出准确的概率值,作为排序的依据。所以,这里的AUC就直观地反映了CTR的准确性(也就是CTR的排序能力)。
终于介绍完了,那么这个值该怎么计算呢?
2、AUC的计算
关于AUC的计算方法,如果仅仅根据上面的描述,我们可能只能想到一种方法,那就是积分法,我们先来介绍这种方法,然后再来介绍其他的方法。
2.1 积分思维
这里的积分法其实就是我们之前介绍的绘制ROC曲线的过程,用代码简单描述下:
auc = 0.0
height = 0.0
for each training example x_i, y_i:
if y_i = 1.0:
height = height + 1/(tp+fn)
else
auc += height * 1/(tn+fp)
return auc
相关文章