Python编写的基于机器学习的DDoS攻击检测和防御系统
这是一个基于Python编写的DDoS攻击检测和防御系统,采用了机器学习技术来识别网络流量中的恶意行为,并采取措施阻止攻击。
首先,系统会收集网络流量数据,并使用数据分析工具(如Wireshark)进行数据预处理。接着,数据会被送入机器学习算法中进行训练,以识别正常和异常的网络流量模式。在训练完成后,系统会自动启动检测和防御功能。
当系统检测到异常行为时,它将立即采取预定的措施来阻止攻击。例如,它可以自动地禁止来自恶意来源IP地址的所有流量,并向管理员发送警报。
以下是一些代码演示:
收集网络流量数据并进行预处理:
import os import subprocess # capture network traffic def capture_traffic(): command = "tcpdump -i eth0 -w traffic.pcap" subprocess.Popen(command, shell=True) # preprocess pcap file def preprocess_pcap(): command = "tshark -r traffic.pcap -T fields -e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport > traffic.txt" subprocess.Popen(command, shell=True)
使用机器学习算法进行训练:
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix # load and preprocess data data = pd.read_csv('traffic.txt', delimiter='\t', header=None, names=['src_ip', 'dst_ip', 'src_port', 'dst_port']) labels = [0 if 'pidancode.com' in x or '皮蛋编程' in x else 1 for x in data['dst_ip']] features = data[['src_port', 'dst_port']] # split data into train and test sets X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42) # train random forest model model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(X_train, y_train) # evaluate model performance y_pred = model.predict(X_test) score = accuracy_score(y_test, y_pred) conf_matrix = confusion_matrix(y_test, y_pred)
检测和防御恶意行为:
import iptables # detect malicious traffic using pre-trained model def detect_malicious_traffic(src_port, dst_port): is_malicious = model.predict([[src_port, dst_port]]) return bool(is_malicious) # block traffic from malicious IP addresses def block_malicious_ips(src_ip): command = f"iptables -A INPUT -s {src_ip} -j DROP" iptables.main(rule=command)
相关文章