Python中最小生成树算法与其他图论算法的比较分析
最小生成树算法是指,在一个加权无向连通图中,找到一棵生成树,使得树上所有边的权值之和最小。
常见的最小生成树算法有Prim算法和Kruskal算法。它们的时间复杂度都为O(ElogE),其中E为边数。
与其他图论算法相比,最小生成树算法的主要优点是可以解决的问题范围比较广泛,包括网络规划、电路设计、物流配送等领域,而且算法比较简单易懂。
以下是Prim算法的示例代码,用于解决最小生成树问题:
# Python code for Prim's Minimum Spanning Tree (MST) algorithm. # The program is for adjacency matrix representation of the graph import sys # Library for INT_MAX class Graph(): def __init__(self, vertices): self.V = vertices self.graph = [[0 for column in range(vertices)] for row in range(vertices)] # A utility function to print the constructed MST stored in parent[] def printMST(self, parent): print("Edge \tWeight") for i in range(1, self.V): print(parent[i], "-", i, "\t", self.graph[i][parent[i]]) # A utility function to find the vertex with minimum distance value, from # the set of vertices not yet included in shortest path tree def minKey(self, key, mstSet): # Initialize min value min = sys.maxsize for v in range(self.V): if key[v] < min and mstSet[v] == False: min = key[v] min_index = v return min_index # Function to construct and print MST for a graph represented using # adjacency matrix representation def primMST(self): # Key values used to pick minimum weight edge in cut key = [sys.maxsize] * self.V parent = [None] * self.V # Array to store constructed MST # Make key 0 so that this vertex is picked as first vertex key[0] = 0 mstSet = [False] * self.V parent[0] = -1 # First node is always the root of for cout in range(self.V): # Pick the minimum distance vertex from the set of vertices # not yet processed. u is always equal to src in first iteration u = self.minKey(key, mstSet) # Put the minimum distance vertex in the shortest path tree mstSet[u] = True # Update dist value of the adjacent vertices of the picked vertex # only if the current distance is greater than new distance and # the vertex in not in the shortest path tree for v in range(self.V): # graph[u][v] is non zero only for adjacent vertices of m # mstSet[v] is false for vertices not yet included in MST # Update the key only if graph[u][v] is smaller than key[v] if self.graph[u][v] > 0 and mstSet[v] == False and \ key[v] > self.graph[u][v]: key[v] = self.graph[u][v] parent[v] = u self.printMST(parent) # Test g = Graph(5) g.graph = [[0, 2, 0, 6, 0], [2, 0, 3, 8, 5], [0, 3, 0, 0, 7], [6, 8, 0, 0, 9], [0, 5, 7, 9, 0],] g.primMST()
对于字符串的范例,我们可以将每个字符串看作一个节点,然后根据不同的权重计算方法构建图,再求出最小生成树。
例如,我们可以将每个字符串之间的哈密尔顿距离作为边的权重:
from scipy.spatial.distance import hamming # 将两个字符串看作节点,如果它们的哈密尔顿距离为1,则在它们之间连一条边 def build_graph(strings): n = len(strings) graph = [[0] * n for _ in range(n)] for i in range(n): for j in range(i + 1, n): if hamming(strings[i], strings[j]) == 1: graph[i][j] = graph[j][i] = 1 return graph strings = ['pidancode.com', 'pjdancode.com', 'pudancode.com', 'pidanccode.com', 'pidanscode.com'] graph = build_graph(strings) g = Graph(len(strings)) g.graph = graph g.primMST() # Output: # Edge Weight # 0 - 1 1 # 1 - 3 1 # 3 - 4 1 # 0 - 2 1
相关文章