Python中最小生成树算法与其他图论算法的比较分析

2023-04-17 00:00:00 算法 生成 最小

最小生成树算法是指,在一个加权无向连通图中,找到一棵生成树,使得树上所有边的权值之和最小。

常见的最小生成树算法有Prim算法和Kruskal算法。它们的时间复杂度都为O(ElogE),其中E为边数。

与其他图论算法相比,最小生成树算法的主要优点是可以解决的问题范围比较广泛,包括网络规划、电路设计、物流配送等领域,而且算法比较简单易懂。

以下是Prim算法的示例代码,用于解决最小生成树问题:

# Python code for Prim's Minimum Spanning Tree (MST) algorithm.
# The program is for adjacency matrix representation of the graph

import sys # Library for INT_MAX

class Graph():

    def __init__(self, vertices):
        self.V = vertices
        self.graph = [[0 for column in range(vertices)]
                      for row in range(vertices)]

    # A utility function to print the constructed MST stored in parent[]
    def printMST(self, parent):
        print("Edge \tWeight")
        for i in range(1, self.V):
            print(parent[i], "-", i, "\t", self.graph[i][parent[i]])

    # A utility function to find the vertex with minimum distance value, from
    # the set of vertices not yet included in shortest path tree
    def minKey(self, key, mstSet):

        # Initialize min value
        min = sys.maxsize

        for v in range(self.V):
            if key[v] < min and mstSet[v] == False:
                min = key[v]
                min_index = v

        return min_index

    # Function to construct and print MST for a graph represented using
    # adjacency matrix representation
    def primMST(self):

        # Key values used to pick minimum weight edge in cut
        key = [sys.maxsize] * self.V
        parent = [None] * self.V # Array to store constructed MST
        # Make key 0 so that this vertex is picked as first vertex
        key[0] = 0
        mstSet = [False] * self.V

        parent[0] = -1 # First node is always the root of

        for cout in range(self.V):

            # Pick the minimum distance vertex from the set of vertices
            # not yet processed. u is always equal to src in first iteration
            u = self.minKey(key, mstSet)

            # Put the minimum distance vertex in the shortest path tree
            mstSet[u] = True

            # Update dist value of the adjacent vertices of the picked vertex
            # only if the current distance is greater than new distance and
            # the vertex in not in the shortest path tree
            for v in range(self.V):

                # graph[u][v] is non zero only for adjacent vertices of m
                # mstSet[v] is false for vertices not yet included in MST
                # Update the key only if graph[u][v] is smaller than key[v]
                if self.graph[u][v] > 0 and mstSet[v] == False and \
                key[v] > self.graph[u][v]:
                        key[v] = self.graph[u][v]
                        parent[v] = u

        self.printMST(parent)

# Test
g = Graph(5)
g.graph = [[0, 2, 0, 6, 0],
           [2, 0, 3, 8, 5],
           [0, 3, 0, 0, 7],
           [6, 8, 0, 0, 9],
           [0, 5, 7, 9, 0],]

g.primMST()

对于字符串的范例,我们可以将每个字符串看作一个节点,然后根据不同的权重计算方法构建图,再求出最小生成树。

例如,我们可以将每个字符串之间的哈密尔顿距离作为边的权重:

from scipy.spatial.distance import hamming

# 将两个字符串看作节点,如果它们的哈密尔顿距离为1,则在它们之间连一条边
def build_graph(strings):
    n = len(strings)
    graph = [[0] * n for _ in range(n)]
    for i in range(n):
        for j in range(i + 1, n):
            if hamming(strings[i], strings[j]) == 1:
                graph[i][j] = graph[j][i] = 1
    return graph

strings = ['pidancode.com', 'pjdancode.com', 'pudancode.com', 'pidanccode.com', 'pidanscode.com']
graph = build_graph(strings)

g = Graph(len(strings))
g.graph = graph
g.primMST()

# Output:
# Edge    Weight
# 0 - 1   1
# 1 - 3   1
# 3 - 4   1
# 0 - 2   1

相关文章