最短路径算法的Python实现与可视化
最短路径算法是一种用于寻找两个节点之间最短路径的算法,其应用广泛,例如路线规划、通讯网络路径优化等。本文将介绍最短路径算法的Python实现与可视化。
- Dijkstra算法
Dijkstra算法是最短路径算法中最为经典的一种,它的基本思想是采用贪心策略,通过逐步确定起点到各个节点的最短路径来寻找整个图中的最短路径。
以下是Dijkstra算法的Python实现,我们以一个字符串为例:
# 定义一个字符串作为图 graph = { 'pidancode.com': {'coding.net':1, 'github.com':2}, 'coding.net': {'pidancode.com':1, 'github.com':1}, 'github.com': {'pidancode.com':2, 'coding.net':1} } # 定义Dijkstra算法函数 def dijkstra(graph, start_node, end_node): # 初始化起点 unvisited_nodes = [n for n in graph] # 未遍历节点列表 shortest_distances = {n:float('inf') for n in graph} # 起点到每个节点的最短距离 shortest_distances[start_node] = 0 # 起点到自身的距离为0 path = {} # 每个节点的前驱节点 current_node = start_node # 初始化当前节点 while current_node != end_node: # 计算当前节点相邻节点的最短距离 for neighbor in graph[current_node]: if neighbor in unvisited_nodes: distance = graph[current_node][neighbor] if distance + shortest_distances[current_node] < shortest_distances[neighbor]: shortest_distances[neighbor] = distance + shortest_distances[current_node] path[neighbor] = current_node # 标记当前节点为已遍历 unvisited_nodes.remove(current_node) # 选择未遍历节点中距离起点最近的节点 candidates = {n: shortest_distances[n] for n in unvisited_nodes} if not candidates: return "路径不存在" current_node = min(candidates, key=candidates.get) # 构造最短路径 path_list = [end_node] last_node = end_node while last_node != start_node: last_node = path[last_node] path_list.append(last_node) return "->".join(path_list[::-1]), shortest_distances[end_node] # 测试Dijkstra算法 print(dijkstra(graph, 'pidancode.com', 'github.com'))
- Floyd算法
Floyd算法是另一种经典的最短路径算法,其基本思想是通过动态规划的方式,递推地求出任意两节点之间的最短路径。
以下是Floyd算法的Python实现,我们同样以一个字符串为例:
# 定义一个字符串作为图 graph = { 'pidancode.com': {'coding.net':1, 'github.com':2}, 'coding.net': {'pidancode.com':1, 'github.com':1}, 'github.com': {'pidancode.com':2, 'coding.net':1} } # 定义Floyd算法函数 def floyd(graph): nodes = list(graph.keys()) n = len(nodes) distances = [[float('inf')]*n for _ in range(n)] # 初始化距离矩阵,相邻节点的距离为边权重,自身节点的距离为0 for i in range(n): distances[i][i] = 0 for j in graph[nodes[i]]: distances[i][nodes.index(j)] = graph[nodes[i]][j] # 动态规划求解最短路径 for k in range(n): for i in range(n): for j in range(n): if distances[i][j] > distances[i][k] + distances[k][j]: distances[i][j] = distances[i][k] + distances[k][j] # 构造结果字典 result = {nodes[i]: {nodes[j]: distances[i][j] for j in range(n)} for i in range(n)} return result # 测试Floyd算法 print(floyd(graph))
- 可视化
为了更直观地展示最短路径算法的结果,我们可以使用Python的networkx库来绘制图形,并通过matlibplot库将图片输出到文件。
以下是以Dijkstra算法为例的可视化代码:
import networkx as nx import matplotlib.pyplot as plt from networkx.drawing.nx_agraph import graphviz_layout # 绘制图形 G = nx.DiGraph(graph) pos = graphviz_layout(G, prog='dot') nx.draw(G, pos, with_labels=True, font_size=14, font_family='arial') edge_labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10, font_family='arial') # Dijkstra算法求解最短路径 path, distance = dijkstra(graph, 'pidancode.com', 'github.com') print("最短路径为“%s”,距离为%d" % (path, distance)) # 标注最短路径 path_nodes = path.split("->") path_edges = [(path_nodes[i], path_nodes[i+1]) for i in range(len(path_nodes)-1)] nx.draw_networkx_edges(G, pos, edgelist=path_edges, edge_color='r', width=2) # 输出图片到文件 plt.savefig("dijkstra.png")
可视化结果如下图所示:
本文介绍了最短路径算法的Python实现与可视化,希望对读者有所帮助。
相关文章