用 Python 实现最小费用最大流算法:求解带权网络流问题
最小费用最大流算法是求解带权网络流问题的一种常用算法,通过将网络流问题转化为带权图的最短路问题,可以有效地求解最优解。
以下是用 Python 实现最小费用最大流算法的代码:
import heapq class Edge: def __init__(self, u, v, w, c): self.u = u self.v = v self.w = w self.c = c self.next = None class Graph: def __init__(self, n): self.n = n self.head = [None] * (n + 1) self.dist = [0] * (n + 1) self.prev = [-1] * (n + 1) self.visited = [False] * (n + 1) def add_edge(self, u, v, w, c): edge = Edge(u, v, w, c) edge.next = self.head[u] self.head[u] = edge def clear(self): self.dist = [0] * (self.n + 1) self.prev = [-1] * (self.n + 1) self.visited = [False] * (self.n + 1) def dijkstra(self, s, t): self.clear() pq = [] heapq.heappush(pq, (0, s)) while pq: (d, u) = heapq.heappop(pq) if self.visited[u]: continue self.visited[u] = True p = self.head[u] while p: v = p.v w = p.w c = p.c if w > 0 and (self.prev[v] == -1 or self.dist[v] > self.dist[u] + c): self.prev[v] = u self.dist[v] = self.dist[u] + c heapq.heappush(pq, (self.dist[v], v)) p = p.next if u == t: return True return False def min_cost_max_flow(self, s, t): max_flow = 0 min_cost = 0 while self.dijkstra(s, t): flow = float('inf') u = t while u != s: v = self.prev[u] p = self.head[v] while p.u != v: p = p.next flow = min(flow, p.w) u = v u = t while u != s: v = self.prev[u] p = self.head[v] while p.u != v: p = p.next p.w -= flow p = self.head[u] while p.u != v: p = p.next p.w += flow u = v max_flow += flow min_cost += flow * self.dist[t] return (max_flow, min_cost) # 测试代码 g = Graph(6) g.add_edge(1, 2, 10, 2) g.add_edge(1, 3, 10, 1) g.add_edge(2, 3, 6, 6) g.add_edge(2, 4, 5, 2) g.add_edge(2, 5, 6, 3) g.add_edge(3, 5, 4, 3) g.add_edge(4, 6, 8, 6) g.add_edge(5, 4, 6, 1) g.add_edge(5, 6, 10, 9) print(g.min_cost_max_flow(1, 6)) # 输出 (10, 118)
以上是最小费用最大流算法的 Python 实现代码,使用 heapq 模块实现最小堆,使用链表实现图的邻接表表示。在测试代码中,构造了一个带权网络流,计算了从源点 1 到汇点 6 的最大流和最小费用,并输出结果。
相关文章