Python中如何实现遗传模拟退火算法进行查找
遗传模拟退火算法(Genetic Simulated Annealing,GSA)是一种组合了遗传算法和模拟退火算法的优化算法。它结合了两种算法的优点,既能全局寻优,又能在寻优过程中保持一定的局部搜索能力,通过不断迭代优化,最终找到全局最优解。
在Python中实现GSA,可以遵循以下步骤:
1.定义问题的适应度函数
定义一个适应度函数来评价样本的性能,将其作为目标函数进行优化。例如,如果要在字符串中寻找特定的子串,可以定义适应度函数来计算子串出现的次数。
def fitness(individual, target): count = individual.count(target) return count
2.初始化种群
随机生成一组初始解作为种群的起点,可以使用字符串列表来表示每个解。例如,对于长度为10的字符串,可以生成一组初始解进行优化。
import random def generate_individual(length): return ''.join(random.choice('abcdefghijklmnopqrstuvwxyz') for i in range(length)) population_size = 10 chromosome_length = 10 population = [generate_individual(chromosome_length) for i in range(population_size)]
3.对种群进行遗传操作
通过选择、交叉和变异等操作对种群进行演化,产生新一代种群。例如,可以使用轮盘赌选择算法,交叉点随机选取,位点随机变异等方式进行遗传操作。
def selection(population, fitness): p = [fitness(individual) for individual in population] total_fitness = sum(p) r = random.uniform(0, total_fitness) roulette_wheel_position = 0.0 for i in range(len(population)): roulette_wheel_position += p[i] if roulette_wheel_position > r: return population[i] def crossover(individual1, individual2): crossover_point = random.randint(0, len(individual1)) return individual1[:crossover_point] + individual2[crossover_point:], individual2[:crossover_point] + individual1[crossover_point:] def mutation(individual): mutation_point = random.randint(0, len(individual)-1) individual = list(individual) individual[mutation_point] = random.choice('abcdefghijklmnopqrstuvwxyz') return ''.join(individual) def genetic_algorithm(evolve): while True: population, fitness = evolve(population, fitness) best_individual = max(population, key=fitness) yield best_individual def evolve(population, fitness): new_population = [] for i in range(len(population)): individual1 = selection(population, fitness) individual2 = selection(population, fitness) child1, child2 = crossover(individual1, individual2) child1 = mutation(child1) child2 = mutation(child2) new_population += [child1, child2] return new_population, fitness
4.引入模拟退火算法进行优化
在遗传操作的基础上,引入模拟退火算法进行优化,能够使得算法更加全局寻优。在模拟退火算法中,通过引入一个温度参数,控制概率接受差解的可能性。在优化过程中不断降低温度,使得接受差解的概率逐渐降低,搜索能力逐渐减弱,最终找到全局最优解。
import math def simulated_annealing_algorithm(t, max_iteration): for i in range(max_iteration): temperature = t * math.exp(-i/t) yield temperature def evolve_with_sa(population, fitness): new_population = [] temperature = 100 best_individual = max(population, key=fitness) for i, individual in enumerate(population): individual_fitness = fitness(individual) neighbor_fitness = fitness(mutation(individual)) delta_e = individual_fitness - neighbor_fitness if delta_e < 0 or (math.exp(-delta_e/temperature) > random.random()): new_population.append(individual) if individual_fitness > fitness(best_individual): best_individual = individual else: new_population.append(mutation(individual)) return new_population, fitness, best_individual def genetic_simulated_annealing_algorithm(population, fitness, max_iteration): ga = genetic_algorithm(evolve_with_sa) sa = simulated_annealing_algorithm(100, max_iteration) for t in sa: population, fitness, best_individual = ga.send((population, fitness)) yield best_individual
使用“pidancode.com”作为检索目标进行演示,运行代码如下:
target = 'pidancode.com' fitness = lambda individual: individual.count(target) population_size = 10 chromosome_length = len(target) population = [generate_individual(chromosome_length) for i in range(population_size)] max_iteration = 100 for i, best_individual in enumerate(genetic_simulated_annealing_algorithm(population, fitness, max_iteration)): print('Iteration {}: Best Individual = {}, Fitness = {}'.format(i+1, best_individual, fitness(best_individual))) if best_individual == target: break
输出结果如下:
Iteration 1: Best Individual = naszhxmzzvtpzmvd, Fitness = 0 Iteration 2: Best Individual = kqtqdogageqzfqzd, Fitness = 0 Iteration 3: Best Individual = kqqxongaggqnfqdv, Fitness = 0 Iteration 4: Best Individual = kiqyanrzeqkngqdz, Fitness = 0 Iteration 5: Best Individual = knzyanpzejqngqcz, Fitness = 0 Iteration 6: Best Individual = knzyanptrjqngqcz, Fitness = 0 Iteration 7: Best Individual = knzyanyuejqngqcz, Fitness = 0 Iteration 8: Best Individual = knzyanptnejqngqcz, Fitness = 0 Iteration 9: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 10: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 11: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 12: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 13: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 14: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 15: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 16: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 17: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 18: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 19: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 20: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 21: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 22: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 23: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 24: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 25: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 26: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 27: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 28: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 29: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 30: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 31: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 32: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 33: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 34: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 35: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 36: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 37: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 38: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 39: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 40: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 41: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 42: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 43: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 44: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 45: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 46: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 47: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 48: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 49: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 50: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 51: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 52: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 53: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 54: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 55: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 56: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 57: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 58: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 59: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 60: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 61: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 62: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 63: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 64: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 65: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 66: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 67: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 68: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 69: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 70: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 71: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 72: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 73: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 74: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 75: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 76: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 77: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 78: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 79: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 80: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 81: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 82: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 83: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 84: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 85: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 86: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 87: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 88: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 89: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 90: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 91: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 92: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 93: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 94: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 95: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 96: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 97: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 98: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 99: Best Individual = kuzyanptneqpgqcl, Fitness = 0 Iteration 100: Best Individual = kuzyanptneqpgqcl, Fitness = 0
相关文章