Python递归实现神经网络算法

2023-04-16 00:00:00 算法 递归 神经网络

神经网络是一种人工智能算法,常用于分类、回归和聚类等任务。Python递归实现神经网络算法需要以下步骤:

  1. 定义神经网络的结构:输入层、隐藏层和输出层,每一层由若干个神经元(节点)组成,每个神经元用一个权值向量和一个激活函数来描述。

  2. 初始化神经网络的权值和偏置:权值是连接输入和输出的参数,偏置是调整每个神经元的输入阈值。

  3. 计算神经网络的输出:用前向传播算法递归地计算每一层的输出值,直到输出层为止。

  4. 计算损失函数:用实际值和预测值之间的差异定义损失函数,例如均方误差、交叉熵等。

  5. 更新权值和偏置:用反向传播算法递归地计算每一层的误差梯度,并根据学习率调整权值和偏置。

  6. 重复第3到第5步,直到损失函数达到最小值或达到预定的迭代次数。

Python递归实现神经网络算法的代码如下所示:

import numpy as np

class NeuralNetwork:
    def __init__(self, sizes):
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

    def feedforward(self, a):
        if self.num_layers == 2:
            return self.sigmoid(np.dot(self.weights[0], a) + self.biases[0])
        else:
            return self.sigmoid(np.dot(self.weights[0], self.feedforward(a)) + self.biases[0])

    def backprop(self, x, y):
        if self.num_layers == 2:
            delta_b, delta_w = self.backprop2(x, y)
        else:
            delta_b, delta_w = self.backprop(self.feedforward(x), y)
        return delta_b, delta_w

    def backprop2(self, x, y):
        delta_b = [np.zeros(b.shape) for b in self.biases]
        delta_w = [np.zeros(w.shape) for w in self.weights]
        z = np.dot(self.weights[0], x) + self.biases[0]
        a = self.sigmoid(z)
        delta = (a - y) * self.sigmoid_prime(z)
        delta_b[0] = delta
        delta_w[0] = np.dot(delta, x.transpose())
        return delta_b, delta_w

    def sigmoid(self, z):
        return 1.0 / (1.0 + np.exp(-z))

    def sigmoid_prime(self, z):
        return self.sigmoid(z) * (1 - self.sigmoid(z))

    def evaluate(self, test_data):
        test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)

    def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
        n = len(training_data)
        if test_data:
            n_test = len(test_data)
        for j in range(epochs):
            np.random.shuffle(training_data)
            mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)]
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta)
            if test_data:
                print("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
            else:
                print("Epoch {0} complete".format(j))

    def update_mini_batch(self, mini_batch, eta):
        delta_b = [np.zeros(b.shape) for b in self.biases]
        delta_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_delta_b, delta_delta_w = self.backprop(x, y)
            delta_b = [db+ddb for db, ddb in zip(delta_b, delta_delta_b)]
            delta_w = [dw+ddw for dw, ddw in zip(delta_w, delta_delta_w)]
        self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, delta_w)]
        self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, delta_b)]

其中,sizes指定神经网络每一层的神经元个数,例如sizes=[2, 3, 1]表示输入层有2个神经元,隐藏层有3个神经元,输出层有1个神经元。biases和weights分别表示每一层的偏置和权值。feedforward方法递归地计算每一层的输出,backprop方法递归地计算误差梯度,SGD方法使用小批量梯度下降算法更新权值和偏置。sigmoid和sigmoid_prime分别表示sigmoid激活函数和其导数,evaluate方法用于评估预测精度。

相关文章