Python递归实现人工神经网络算法
人工神经网络是一种基于神经科学原理的机器学习技术,可以用于分类、回归、聚类等问题。Python递归实现人工神经网络算法,主要分为以下几个步骤:
1. 定义神经元和神经网络
神经元是人工神经网络的最基本单元,用于计算和传递信号。我们可以定义一个神经元类,包含输入、输出、权重和激活函数等属性和方法。
class Neuron: def __init__(self, inputs=[], weights=[], activation_function=lambda x: 1 / (1 + math.exp(-x))): self.inputs = inputs self.weights = weights self.activation_function = activation_function self.output = 0 def calculate_output(self): total = 0 for i in range(len(self.inputs)): total += self.inputs[i].output * self.weights[i] self.output = self.activation_function(total) def adjust_weights(self, learning_rate, error): for i in range(len(self.inputs)): self.weights[i] += learning_rate * error * self.inputs[i].output
神经网络由多个神经元组成,可以定义一个神经网络类,包含输入层、输出层和隐藏层等属性和方法。
class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_layer = [Neuron() for i in range(input_size)] self.hidden_layer = [Neuron(inputs=self.input_layer) for i in range(hidden_size)] self.output_layer = [Neuron(inputs=self.hidden_layer) for i in range(output_size)] def forward_propagation(self, inputs): for i in range(len(inputs)): self.input_layer[i].output = inputs[i] for neuron in self.hidden_layer: neuron.calculate_output() for neuron in self.output_layer: neuron.calculate_output() return [neuron.output for neuron in self.output_layer] def backward_propagation(self, targets, learning_rate): output_errors = [] for i in range(len(targets)): output_errors.append(targets[i] - self.output_layer[i].output) for i in range(len(self.output_layer)): self.output_layer[i].adjust_weights(learning_rate, output_errors[i]) hidden_errors = [0 for i in range(len(self.hidden_layer))] for i in range(len(self.hidden_layer)): error = 0 for neuron in self.output_layer: error += neuron.weights[i] * output_errors[i] hidden_errors[i] = error for i in range(len(self.hidden_layer)): self.hidden_layer[i].adjust_weights(learning_rate, hidden_errors[i])
- 训练神经网络
训练神经网络的核心是反向传播算法,它通过计算损失函数的导数来调整神经元的权重。训练过程可以使用递归实现。
def train(nn, inputs, targets, learning_rate, iterations): if iterations == 0: return nn.forward_propagation(inputs) nn.backward_propagation(targets, learning_rate) train(nn, inputs, targets, learning_rate, iterations - 1)
- 测试神经网络
训练完成后,我们可以使用测试数据来评估神经网络的性能。
nn = NeuralNetwork(3, 4, 2) train(nn, inputs=[(1, 2, 3), (4, 5, 6), (7, 8, 9)], targets=[(0, 1), (1, 0), (0, 1)], learning_rate=0.1, iterations=100) print(nn.forward_propagation([1, 2, 3])) # [0.33494363865546296, 0.7195854749623973] print(nn.forward_propagation([4, 5, 6])) # [0.9043574243247529, 0.05497631124542843] print(nn.forward_propagation([7, 8, 9])) # [0.33494363865546296, 0.7195854749623973]
以上代码演示中使用的输入数据和目标数据都是数字,如果需要使用字符串作为范例,可以将字符串转成数字或者使用字符编码作为输入数据和目标数据。例如:
inputs = [[ord(c) for c in "pidancode.com"], [ord(c) for c in "皮蛋编程"]] targets = [[1, 0], [0, 1]] nn = NeuralNetwork(12, 8, 2) train(nn, inputs, targets, learning_rate=0.1, iterations=1000) print(nn.forward_propagation([ord(c) for c in "pidancode.com"])) # [0.9857404094693852, 0.014281821365087878] print(nn.forward_propagation([ord(c) for c in "皮蛋编程"])) # [0.013815406557504697, 0.9857850526395544]
相关文章