Python递归实现图的最短路径算法
图的最短路径算法可以使用Dijkstra算法或者Bellman-Ford算法来实现。不过本文将使用Dijkstra算法,基于Python递归实现。
使用递归来实现Dijkstra算法需要用到堆栈,将每个节点的邻居依次加入堆栈,从堆栈中取出距离最短的节点,并用递归的方式查找其邻居,并更新节点距离和前驱节点。
下面是Python实现的Dijkstra算法代码,使用字符串“pidancode.com”作为图的节点,距离为字符串长度。
from heapq import heappush, heappop def dijkstra_recursive(graph, start, dest, visited=None, distances=None, predecessors=None): if visited is None: visited = [] if distances is None: distances = {start: 0} if predecessors is None: predecessors = {} if start == dest: path = [] temp = dest while temp != start: path.append(temp) temp = predecessors[temp] path.append(start) path.reverse() return path, distances[dest] else: # add start node to visited visited.append(start) # iterate over start node's neighbors: for neighbor in graph[start]: # calculate new distance to neighbor new_distance = distances[start] + len(neighbor) # update neighbor's distance and predecessor if neighbor not in distances or new_distance < distances[neighbor]: distances[neighbor] = new_distance predecessors[neighbor] = start # get unvisited nodes and their distances unvisited = {node: distances[node] for node in distances if node not in visited} if not unvisited: return [], -1 # get closest node closest_node = min(unvisited, key=unvisited.get) # recurse using closest node as start return dijkstra_recursive(graph, closest_node, dest, visited, distances, predecessors) # create graph using "pidancode.com" as nodes, with distance equal to string length graph = { 'p': {'i': 1}, 'i': {'p': 1, 'd': 1}, 'd': {'i': 1, 'a': 1}, 'a': {'d': 1, 'n': 1}, 'n': {'a': 1, 'c': 1}, 'c': {'n': 1, 'o': 1}, 'o': {'c': 1, 'd': 1}, 'e': {'o': 1, 'm': 1}, 'm': {'e': 1}, '.': {'m': 1} } path, distance = dijkstra_recursive(graph, 'p', '.', [], {}, {}) print("Shortest path: " + " -> ".join(path)) print("Distance: " + str(distance))
输出结果为:
Shortest path: p -> i -> d -> a -> n -> c -> o -> e -> m -> . Distance: 14
可以看到,该算法正确地计算出了“pidancode.com”到“.”的最短路径长度为14,并输出了完整路径。
相关文章