在Python中使用决策树进行模型压缩的实现方法
首先需要安装sklearn库,然后我们通过以下步骤来实现决策树的模型压缩:
- 导入需要的库和数据
from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import graphviz digits = load_digits() #加载手写数字数据集 X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=42) #切分数据集
- 训练原始模型
clf = DecisionTreeClassifier(random_state=42) #初始化决策树分类器 clf.fit(X_train, y_train) #训练模型 y_pred = clf.predict(X_test) #预测测试数据 acc = accuracy_score(y_test, y_pred) #计算准确率 print("Accuracy before pruning: {:.2f}%".format(acc*100))
- 可视化原始模型
dot_data = export_graphviz(clf, out_file=None, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.view() #打开决策树可视化界面
- 对模型进行压缩
from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import GridSearchCV #定义一个函数来计算模型中非叶子节点的数量 def count_nodes(tree): cnt = 0 if tree.get_n_leaves() != 1: cnt += 1 for c in tree.children_: if c is not None: cnt += count_nodes(c) return cnt #使用决策树回归器对决策树分类器进行压缩 clf = DecisionTreeRegressor(criterion='mse', splitter='best', max_depth=10, min_samples_split=2, min_samples_leaf=1, max_features=None, random_state=42) param_grid = { 'max_depth': [2, 3, 4, 5], 'min_samples_split': [2, 3, 4], 'min_samples_leaf': [1, 2, 3], } search = GridSearchCV(clf, param_grid, cv=10) search.fit(X_train, y_train) clf = search.best_estimator_ clf.fit(X_train, y_train) y_pred = clf.predict(X_test) acc = accuracy_score(y_test, y_pred.round()) print("Accuracy after pruning: {:.2f}%".format(acc*100)) print("Number of nodes before pruning: {}".format(count_nodes(clf.tree_)))
- 可视化压缩后的模型
dot_data = export_graphviz(clf, out_file=None, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.view() #打开决策树可视化界面
以上就是在Python中使用决策树进行模型压缩的实现方法,可以根据具体的情况对决策树分类器进行优化和压缩,得到更加高效和精确的模型。
相关文章