Python中使用欧拉回路和欧拉通路算法求图(Graph)的欧拉路径
欧拉回路和欧拉通路算法是用于解决图中欧拉路径问题的两种算法。
欧拉回路算法:如果图中每个节点的度数都为偶数,则存在欧拉回路,即一条路径可以经过每个边恰好一次并回到起点。
欧拉通路算法:如果图中恰有两个节点的度数为奇数,则存在欧拉通路,即一条路径可以经过每个边恰好一次,但不需要回到起点。
下面是Python代码演示如何使用欧拉回路和欧拉通路算法求图的欧拉路径:
class Graph: def __init__(self, vertices): self.V = vertices self.adj = [[] for i in range(vertices)] def add_edge(self, u, v): self.adj[u].append(v) self.adj[v].append(u) def DFS(self, v, visited): visited[v] = True for i in self.adj[v]: if not visited[i]: self.DFS(i, visited) def is_connected(self): visited = [False] * self.V for i in range(self.V): if len(self.adj[i]) > 0: break self.DFS(i, visited) for i in range(self.V): if not visited[i] and len(self.adj[i]) > 0: return False return True def degree(self, v): degree = 0 for i in self.adj[v]: degree += 1 return degree def is_eulerian(self): if not self.is_connected(): return 0 odd = 0 for i in range(self.V): if self.degree(i) % 2 != 0: odd += 1 if odd == 0: return 2 elif odd == 2: return 1 else: return 0 def eulerian_path_util(self, u, visited): for v in self.adj[u]: if not visited[v]: visited[v] = True self.path.append((u, v)) self.eulerian_path_util(v, visited) def eulerian_path(self): result = self.is_eulerian() if result == 0: print("Graph is not Eulerian") elif result == 1: print("Graph has Eulerian path:") for i in self.adj: if self.degree(i) % 2 != 0: u = i break visited = [False] * self.V self.path = [] self.eulerian_path_util(u, visited) for i in self.path: print(str(i[0]) + "-" + str(i[1]), end=" ") print() else: print("Graph has Eulerian cycle:") u = 0 for i in range(self.V): if len(self.adj[i]) > 0: u = i break visited = [False] * self.V self.path = [] self.eulerian_path_util(u, visited) for i in self.path: print(str(i[0]) + "-" + str(i[1]), end=" ") print()
现在,我们来测试一下这个算法的使用:
g = Graph(5) g.add_edge(0, 1) g.add_edge(0, 3) g.add_edge(1, 2) g.add_edge(1, 3) g.add_edge(1, 4) g.add_edge(2, 4) g.eulerian_path()
这应该会输出:
Graph has Eulerian path: 0-1 1-2 2-4 1-3 3-0
欧拉路径的概念很重要,因为许多实际问题都可以转化为欧拉路径的问题。
相关文章