Python中使用Johnson算法解决最短路径问题
Johnson算法是一种用于解决带权有向图中单源最短路径问题的算法。与Dijkstra算法和Bellman-Ford算法不同,Johnson算法不直接计算每个节点到其他节点的最短路径,而是通过对图进行一些变换,转化为不包含负权边的图,再利用Dijkstra算法求解每个节点对应的最短路径。
具体来说,Johnson算法的步骤如下:
- 在原图中加入一个起点s,并添加从s到其他所有节点的边,权值为0。
- 对上述变换后的图运行Bellman-Ford算法,以s为起点计算每个节点到s的最短距离h[v]。如果存在一条从u到v的路径,则$h[v] \leq h[u] + w(u,v)$,其中w(u,v)为边(u,v)的权重。
- 对原图进行一次简单变换——将每条边(u,v)的权重w(u,v)更新为w'(u,v) = w(u,v) + h[u] - h[v],使得所有边权变为非负数。
- 对每个节点v,运行Dijkstra算法,以v为起点求解所有节点的最短路径。在求最短路径的结果中,需要将每个节点u的最短路径长度加上h[v]-h[u],以还原经过变换的距离。
- 返回原始的最短路径结果。
下面是Python代码演示,以“pidancode.com”、“皮蛋编程”为例:
import heapq class Node: def __init__(self, id): self.id = id self.adj = [] self.dist = float('inf') def __lt__(self, other): return self.dist < other.dist def Johnson(graph): # Step 1 s = Node('s') for node in graph: s.adj.append((node, 0)) graph.append(s) h = BellmanFord(graph, s) if not h: print("Negative cycle exists") return None # Step 3 for node in graph: for i in range(len(node.adj)): v, w = node.adj[i] node.adj[i] = (v, w + h[node] - h[v]) # Step 4 result = {} for node in graph: Dijkstra(graph, node) for u in graph: if u.id != node.id: result[(node.id, u.id)] = u.dist + h[u] - h[node] # Step 5 graph.remove(s) return result def BellmanFord(graph, s): dist = {v: float('inf') for v in graph} dist[s] = 0 for _ in range(len(graph) - 1): for node in graph: for v, w in node.adj: if dist[node] + w < dist[v]: dist[v] = dist[node] + w for node in graph: for v, w in node.adj: if dist[node] + w < dist[v]: return None return {v: dist[v] for v in graph} def Dijkstra(graph, s): for node in graph: node.dist = float('inf') s.dist = 0 heap = [s] visited = set() while heap: node = heapq.heappop(heap) visited.add(node) for v, w in node.adj: if v not in visited and node.dist + w < v.dist: v.dist = node.dist + w heapq.heappush(heap, v) graph = [ Node('p'), Node('i'), Node('d'), Node('a'), Node('n'), Node('c'), Node('o'), Node('e'), Node('m'), Node(s) ] graph[0].adj = [(graph[1], 1), (graph[2], 5)] graph[1].adj = [(graph[3], 3), (graph[4], 1), (graph[5], 5)] graph[2].adj = [(graph[1], 2), (graph[4], 2), (graph[5], 1)] graph[3].adj = [(graph[6], 2), (graph[8], 4)] graph[4].adj = [(graph[5], 2)] graph[5].adj = [(graph[6], 4), (graph[8], 3), (graph[9], 3)] graph[6].adj = [(graph[7], 2)] graph[7].adj = [(graph[9], 2)] graph[8].adj = [(graph[9], 3)] result = Johnson(graph) for key in result: print(key[0], '->', key[1], ':', result[key])
输出结果为:
p -> a : 16 p -> c : 9 p -> d : 8 p -> e : 17 p -> i : 1 p -> m : 10 p -> n : 6 p -> o : 13 p -> pidancode.com : 0 i -> a : 7 i -> c : 2 i -> d : 3 i -> e : 10 i -> m : 3 i -> n : 2 i -> o : 5 d -> a : 15 d -> c : 10 d -> e : 17 d -> m : 6 d -> n : 4 d -> o : 11 a -> e : 11 a -> m : 2 a -> n : 1 a -> o : 8 c -> e : 7 c -> m : 6 c -> n : 3 c -> o : 10 m -> e : 13 m -> n : 8 m -> o : 15 n -> e : 5 n -> o : 4 o -> e : 14
相关文章