如何使用 Python 堆实现变分自编码器算法?

2023-04-11 00:00:00 算法 如何使用 编码器

变分自编码器是一种生成模型,可以用于图像或文本等数据的生成和降维。在实现变分自编码器时,需要使用到概率分布和优化算法,可以使用Python中的堆实现。

首先,我们需要导入需要的库,包括NumPy、Keras和Tensorflow:

import numpy as np
from tensorflow.keras.layers import Lambda, Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from tensorflow.keras import objectives

接下来,我们需要构建模型。我们可以定义编码器模型、解码器模型和变分自编码器模型:

def create_encoder(latent_dim):
    input_layer = Input(shape=(784,))
    x = Dense(256, activation='relu')(input_layer)
    x = Dense(128, activation='relu')(x)
    z_mean = Dense(latent_dim)(x)
    z_log_var = Dense(latent_dim)(x)
    return Model(input_layer, [z_mean, z_log_var])

def create_decoder(latent_dim):
    input_layer = Input(shape=(latent_dim,))
    x = Dense(128, activation='relu')(input_layer)
    x = Dense(256, activation='relu')(x)
    output_layer = Dense(784, activation='sigmoid')(x)
    return Model(input_layer, output_layer)

def create_vae(encoder, decoder):
    input_layer = Input(shape=(784,))
    z_mean, z_log_var = encoder(input_layer)
    z = Lambda(sampling)([z_mean, z_log_var])
    reconstructed_input = decoder(z)
    vae = Model(input_layer, reconstructed_input)
    return vae

其中,编码器模型中定义了3层全连接层,其中包括2个隐藏层和1个输出层。解码器模型中同样定义了3层全连接层,包括1个输入层、2个隐藏层和1个输出层。变分自编码器中包括一个编码器、一个解码器以及一个采样层。

接下来,我们需要实现采样函数。在采样函数中,我们使用了随机梯度下降法,通过正态分布随机采样一个小批量数据实现训练:

def sampling(args):
    z_mean, z_log_var = args
    epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim))
    return z_mean + K.exp(z_log_var / 2) * epsilon

最后,我们需要定义损失函数和优化器,使用梯度下降法进行训练:

def vae_loss(x, x_decoded_mean):
    xent_loss = objectives.binary_crossentropy(x, x_decoded_mean)
    kl_loss = -0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
    return xent_loss + kl_loss

vae.compile(optimizer='adam', loss=vae_loss, metrics=['accuracy'])
vae.fit(x_train, x_train, epochs=50, batch_size=128)

在训练中,我们使用了交叉熵(cross entropy)损失函数和Adam优化器,以及50个epoch和批量大小为128的批量梯度下降法。

完整代码如下所示:

import numpy as np
from tensorflow.keras.layers import Lambda, Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from tensorflow.keras import objectives

latent_dim = 2

def create_encoder(latent_dim):
    input_layer = Input(shape=(784,))
    x = Dense(256, activation='relu')(input_layer)
    x = Dense(128, activation='relu')(x)
    z_mean = Dense(latent_dim)(x)
    z_log_var = Dense(latent_dim)(x)
    return Model(input_layer, [z_mean, z_log_var])

def create_decoder(latent_dim):
    input_layer = Input(shape=(latent_dim,))
    x = Dense(128, activation='relu')(input_layer)
    x = Dense(256, activation='relu')(x)
    output_layer = Dense(784, activation='sigmoid')(x)
    return Model(input_layer, output_layer)

def create_vae(encoder, decoder):
    input_layer = Input(shape=(784,))
    z_mean, z_log_var = encoder(input_layer)
    z = Lambda(sampling)([z_mean, z_log_var])
    reconstructed_input = decoder(z)
    vae = Model(input_layer, reconstructed_input)
    return vae

def sampling(args):
    z_mean, z_log_var = args
    epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim))
    return z_mean + K.exp(z_log_var / 2) * epsilon

(x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

encoder = create_encoder(latent_dim)
decoder = create_decoder(latent_dim)
vae = create_vae(encoder, decoder)

def vae_loss(x, x_decoded_mean):
    xent_loss = objectives.binary_crossentropy(x, x_decoded_mean)
    kl_loss = -0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
    return xent_loss + kl_loss

vae.compile(optimizer='adam', loss=vae_loss, metrics=['accuracy'])
vae.fit(x_train, x_train, epochs=50, batch_size=128)

相关文章