如何使用 Python 堆实现变分自编码器算法?
变分自编码器是一种生成模型,可以用于图像或文本等数据的生成和降维。在实现变分自编码器时,需要使用到概率分布和优化算法,可以使用Python中的堆实现。
首先,我们需要导入需要的库,包括NumPy、Keras和Tensorflow:
import numpy as np from tensorflow.keras.layers import Lambda, Input, Dense from tensorflow.keras.models import Model from tensorflow.keras import backend as K from tensorflow.keras import objectives
接下来,我们需要构建模型。我们可以定义编码器模型、解码器模型和变分自编码器模型:
def create_encoder(latent_dim): input_layer = Input(shape=(784,)) x = Dense(256, activation='relu')(input_layer) x = Dense(128, activation='relu')(x) z_mean = Dense(latent_dim)(x) z_log_var = Dense(latent_dim)(x) return Model(input_layer, [z_mean, z_log_var]) def create_decoder(latent_dim): input_layer = Input(shape=(latent_dim,)) x = Dense(128, activation='relu')(input_layer) x = Dense(256, activation='relu')(x) output_layer = Dense(784, activation='sigmoid')(x) return Model(input_layer, output_layer) def create_vae(encoder, decoder): input_layer = Input(shape=(784,)) z_mean, z_log_var = encoder(input_layer) z = Lambda(sampling)([z_mean, z_log_var]) reconstructed_input = decoder(z) vae = Model(input_layer, reconstructed_input) return vae
其中,编码器模型中定义了3层全连接层,其中包括2个隐藏层和1个输出层。解码器模型中同样定义了3层全连接层,包括1个输入层、2个隐藏层和1个输出层。变分自编码器中包括一个编码器、一个解码器以及一个采样层。
接下来,我们需要实现采样函数。在采样函数中,我们使用了随机梯度下降法,通过正态分布随机采样一个小批量数据实现训练:
def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim)) return z_mean + K.exp(z_log_var / 2) * epsilon
最后,我们需要定义损失函数和优化器,使用梯度下降法进行训练:
def vae_loss(x, x_decoded_mean): xent_loss = objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = -0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return xent_loss + kl_loss vae.compile(optimizer='adam', loss=vae_loss, metrics=['accuracy']) vae.fit(x_train, x_train, epochs=50, batch_size=128)
在训练中,我们使用了交叉熵(cross entropy)损失函数和Adam优化器,以及50个epoch和批量大小为128的批量梯度下降法。
完整代码如下所示:
import numpy as np from tensorflow.keras.layers import Lambda, Input, Dense from tensorflow.keras.models import Model from tensorflow.keras import backend as K from tensorflow.keras import objectives latent_dim = 2 def create_encoder(latent_dim): input_layer = Input(shape=(784,)) x = Dense(256, activation='relu')(input_layer) x = Dense(128, activation='relu')(x) z_mean = Dense(latent_dim)(x) z_log_var = Dense(latent_dim)(x) return Model(input_layer, [z_mean, z_log_var]) def create_decoder(latent_dim): input_layer = Input(shape=(latent_dim,)) x = Dense(128, activation='relu')(input_layer) x = Dense(256, activation='relu')(x) output_layer = Dense(784, activation='sigmoid')(x) return Model(input_layer, output_layer) def create_vae(encoder, decoder): input_layer = Input(shape=(784,)) z_mean, z_log_var = encoder(input_layer) z = Lambda(sampling)([z_mean, z_log_var]) reconstructed_input = decoder(z) vae = Model(input_layer, reconstructed_input) return vae def sampling(args): z_mean, z_log_var = args epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim)) return z_mean + K.exp(z_log_var / 2) * epsilon (x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) encoder = create_encoder(latent_dim) decoder = create_decoder(latent_dim) vae = create_vae(encoder, decoder) def vae_loss(x, x_decoded_mean): xent_loss = objectives.binary_crossentropy(x, x_decoded_mean) kl_loss = -0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return xent_loss + kl_loss vae.compile(optimizer='adam', loss=vae_loss, metrics=['accuracy']) vae.fit(x_train, x_train, epochs=50, batch_size=128)
相关文章