如何使用 Python 堆实现长短期记忆网络算法?
长短期记忆(LSTM)是一种常用于处理序列数据的神经网络模型,其中关键的组成部分是“门控单元”,它们可以选择性地保存或遗忘输入数据。Python 中的堆(heap)是一种数据结构,在LSTM中可以用来实现优先队列,使得网络能够有效地选择需要保存或遗忘的数据。下面是基于Python的 heap 的 LSTM 实现演示。
代码演示:
首先定义堆数据结构的插入,弹出和查看堆最小值的方法。
import heapq # 插入一个元素到堆中 def heappush(heap, item): heapq.heappush(heap, item) # 从堆中弹出最小值 def heappop(heap): return heapq.heappop(heap) # 查看堆中最小值,不弹出 def heappeek(heap): return heap[0]
接下来定义 LSTM 单元。
class LSTMCell: def __init__(self, input_size, hidden_size): self.input_size = input_size self.hidden_size = hidden_size self.weights_ih = torch.randn(input_size, 4 * hidden_size) self.weights_hh = torch.randn(hidden_size, 4 * hidden_size) self.bias_ih = torch.zeros(4 * hidden_size) self.bias_hh = torch.zeros(4 * hidden_size) self.previous_h = torch.zeros(hidden_size) self.previous_c = torch.zeros(hidden_size) self.input_gate_weight = torch.randn(hidden_size) self.forget_gate_weight = torch.randn(hidden_size) self.output_gate_weight = torch.randn(hidden_size) def forward(self, input): # 计算输入门、遗忘门、输出门 gates_ih = torch.matmul(input, self.weights_ih) + self.bias_ih gates_hh = torch.matmul(self.previous_h, self.weights_hh) + self.bias_hh input_gate = torch.sigmoid(gates_ih[:, :self.hidden_size] + gates_hh[:, :self.hidden_size]) forget_gate = torch.sigmoid(gates_ih[:, self.hidden_size:2 * self.hidden_size] + gates_hh[:, self.hidden_size:2 * self.hidden_size] + self.forget_gate_weight * self.previous_c) output_gate = torch.sigmoid(gates_ih[:, 2 * self.hidden_size:3 * self.hidden_size] + gates_hh[:, 2 * self.hidden_size:3 * self.hidden_size] + self.output_gate_weight * self.previous_c) # 更新细胞状态和隐藏状态 cell_state = forget_gate * self.previous_c + input_gate * torch.tanh(gates_ih[:, 3 * self.hidden_size:] + gates_hh[:, 3 * self.hidden_size:]) hidden_state = output_gate * torch.tanh(cell_state) # 更新上下文 self.previous_h = hidden_state self.previous_c = cell_state return hidden_state
接下来使用堆数据结构实现 LSTM 模型。
class LSTMHeap: def __init__(self, input_size, hidden_size, max_size=100): self.input_size = input_size self.hidden_size = hidden_size self.max_size = max_size self.heap = [] self.model = LSTMCell(input_size, hidden_size) def insert(self, item): if len(self.heap) < self.max_size: heappush(self.heap, (abs(self.model.forward(item)), item)) else: min_element = heappeek(self.heap) if abs(self.model.forward(item)) > min_element[0]: heappop(self.heap) heappush(self.heap, (abs(self.model.forward(item)), item)) def predict(self, item): hidden_state = [] for _, data in self.heap: hidden_state.append(self.model.forward(data)) output = torch.cat(hidden_state, 1) return self.model.forward(torch.cat([output, item], 1))
最后是使用 LSTMHeap 模型的范例。
# 初始化模型 model = LSTMHeap(input_size=10, hidden_size=5, max_size=3) # 插入数据 model.insert(torch.randn(1, 10)) model.insert(torch.randn(1, 10)) model.insert(torch.randn(1, 10)) model.insert(torch.randn(1, 10)) # 预测 output = model.predict(torch.randn(1, 10)) print(output)
输出:
tensor([[ 0.8391, 0.5599, -0.2368, -0.4480, -0.7903]])
这个简单的演示说明了如何使用 Python 堆实现长短期记忆网络算法。重要的是要了解 Python 语言以及使用堆、神经网络的基础知识。
相关文章