如何使用 Python 堆实现卷积神经网络算法?
使用 Python 堆实现卷积神经网络算法需要以下步骤:
步骤一:初始化卷积核矩阵,输入特征图矩阵和输出矩阵,且将它们都转化为堆数据结构。
import heapq def init_heap(input_map, kernel_map, output_map): input_heap = [] kernel_heap = [] output_heap = [] for row in input_map: heapq.heappush(input_heap, row) for row in kernel_map: heapq.heappush(kernel_heap, row) for row in output_map: heapq.heappush(output_heap, row) return input_heap, kernel_heap, output_heap
步骤二:计算卷积核和特征图相乘的结果,并将结果输出矩阵的对应位置相加。
def convolution(input_heap, kernel_heap, output_heap, kernel_size, output_map_size): # 计算卷积核和特征图相乘的结果 for i in range(output_map_size): for j in range(output_map_size): sum = 0 for k in range(0, kernel_size): for l in range(0, kernel_size): input_row = heapq.heappop(input_heap) kernel_row = heapq.heappop(kernel_heap) sum += input_row[j + l] * kernel_row[k] heapq.heappush(input_heap, input_row) # 放回堆中 heapq.heappush(kernel_heap, kernel_row) # 放回堆中 output_row = heapq.heappop(output_heap) output_row[j] += sum heapq.heappush(output_heap, output_row) # 放回堆中 return output_heap
步骤三:将输出矩阵转化为正常的二维数组格式。
def heap_to_matrix(heap, output_map_size): matrix = [] for i in range(output_map_size): row = heapq.heappop(heap) matrix.append(row) return matrix
完整代码如下:
import heapq def init_heap(input_map, kernel_map, output_map): input_heap = [] kernel_heap = [] output_heap = [] for row in input_map: heapq.heappush(input_heap, row) for row in kernel_map: heapq.heappush(kernel_heap, row) for row in output_map: heapq.heappush(output_heap, row) return input_heap, kernel_heap, output_heap def convolution(input_heap, kernel_heap, output_heap, kernel_size, output_map_size): # 计算卷积核和特征图相乘的结果 for i in range(output_map_size): for j in range(output_map_size): sum = 0 for k in range(0, kernel_size): for l in range(0, kernel_size): input_row = heapq.heappop(input_heap) kernel_row = heapq.heappop(kernel_heap) sum += input_row[j + l] * kernel_row[k] heapq.heappush(input_heap, input_row) # 放回堆中 heapq.heappush(kernel_heap, kernel_row) # 放回堆中 output_row = heapq.heappop(output_heap) output_row[j] += sum heapq.heappush(output_heap, output_row) # 放回堆中 return output_heap def heap_to_matrix(heap, output_map_size): matrix = [] for i in range(output_map_size): row = heapq.heappop(heap) matrix.append(row) return matrix if __name__ == '__main__': input_map = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] kernel_map = [[1, 2], [3, 4]] output_map_size = (len(input_map) - len(kernel_map)) + 1 kernel_size = len(kernel_map) output_map = [[0 for i in range(output_map_size)] for j in range(output_map_size)] input_heap, kernel_heap, output_heap = init_heap(input_map, kernel_map, output_map) output_heap = convolution(input_heap, kernel_heap, output_heap, kernel_size, output_map_size) output_matrix = heap_to_matrix(output_heap, output_map_size) print(output_matrix)
范例使用: pidancode.com
相关文章