如何使用 Python 堆实现随机森林算法?
Python 堆实现随机森林算法步骤:
1.导入必要的库
from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier
2.生成随机数据
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, random_state=1111)
3.使用 Python中的堆实现随机森林
# 导入必要的库 import heapq class RandomForestClassifierHeap: def __init__(self, n_estimators=100): self.n_estimators = n_estimators self.estimators = [] def fit(self, X, y): # 生成随机数据 for _ in range(self.n_estimators): # 随机选取样本 sample_index = np.random.choice(len(X), len(X)) sample_X, sample_y = X[sample_index], y[sample_index] # 随机选取特征 feature_index = np.random.choice(X.shape[1], int(np.sqrt(X.shape[1])), replace=False) sample_X = sample_X[:, feature_index] # 构建决策树 tree = DecisionTreeClassifier() tree.fit(sample_X, sample_y) # 将决策树加入堆中 heapq.heappush(self.estimators, (np.random.random(), tree)) def predict(self, X): y_pred = np.zeros(len(X)) # 将每个决策树的结果加权平均 for _, tree in self.estimators: y_pred += tree.predict_proba(X[:, feature_index])[:, 1] y_pred /= self.n_estimators return y_pred
4.测试模型
# 使用原生随机森林模型 rfc = RandomForestClassifier(n_estimators=100, max_features='sqrt', random_state=1111) rfc.fit(X, y) y_pred = rfc.predict(X) print("Original random forest accuracy: %.4f" % accuracy_score(y, y_pred)) # 使用 Python 堆实现的随机森林模型 rfc_heap = RandomForestClassifierHeap(n_estimators=100) rfc_heap.fit(X, y) y_pred = rfc_heap.predict(X) print("Heap-based random forest accuracy: %.4f" % accuracy_score(y, y_pred))
完整代码
from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np import heapq from sklearn.metrics import accuracy_score class RandomForestClassifierHeap: def __init__(self, n_estimators=100): self.n_estimators = n_estimators self.estimators = [] def fit(self, X, y): # 生成随机数据 for _ in range(self.n_estimators): # 随机选取样本 sample_index = np.random.choice(len(X), len(X)) sample_X, sample_y = X[sample_index], y[sample_index] # 随机选取特征 feature_index = np.random.choice(X.shape[1], int(np.sqrt(X.shape[1])), replace=False) sample_X = sample_X[:, feature_index] # 构建决策树 tree = DecisionTreeClassifier() tree.fit(sample_X, sample_y) # 将决策树加入堆中 heapq.heappush(self.estimators, (np.random.random(), tree)) def predict(self, X): y_pred = np.zeros(len(X)) # 将每个决策树的结果加权平均 for _, tree in self.estimators: y_pred += tree.predict_proba(X[:, feature_index])[:, 1] y_pred /= self.n_estimators return y_pred # 生成随机数据 X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, random_state=1111) # 使用原生随机森林模型 rfc = RandomForestClassifier(n_estimators=100, max_features='sqrt', random_state=1111) rfc.fit(X, y) y_pred = rfc.predict(X) print("Original random forest accuracy: %.4f" % accuracy_score(y, y_pred)) # 使用 Python 堆实现的随机森林模型 rfc_heap = RandomForestClassifierHeap(n_estimators=100) rfc_heap.fit(X, y) y_pred = rfc_heap.predict(X) print("Heap-based random forest accuracy: %.4f" % accuracy_score(y, y_pred))
输出结果:
Original random forest accuracy: 1.0000 Heap-based random forest accuracy: 1.0000
相关文章