Python中如何实现带优先级、超时和延迟的进程池
Python中可以通过标准库multiprocessing中的Pool类和Queue类实现带优先级、超时和延迟的进程池。具体实现步骤如下:
- 创建任务队列及各种参数的队列。
from multiprocessing import Pool, Queue tasks_queue = Queue() priority_queue = Queue() timeout_queue = Queue() delay_queue = Queue()
- 往任务队列中添加任务。
tasks_queue.put(('pidancode.com',)) tasks_queue.put(('皮蛋编程',))
- 从队列中获取各种参数,并将任务加入进程池。
pool = Pool(processes=4) while True: try: task = tasks_queue.get(timeout=1) priority = priority_queue.get(timeout=1) timeout = timeout_queue.get(timeout=1) delay = delay_queue.get(timeout=1) result = pool.apply_async(run_task, task, priority=priority) results[result] = timeout time.sleep(delay) except Empty: if len(results) == 0: break
- 运行任务的函数run_task需要支持优先级、超时和延迟。
import time def run_task(task, priority=0): print('Running %s with priority %d' % (task[0], priority)) time.sleep(1) return task
- 在上述代码中,我们需要借助一个字典results来保存任务的结果和超时时间,每隔一段时间检查这个字典中的任务是否超时,若已超时则从进程池中终止该任务。这里简单演示一下如何检查任务是否超时。
for result, timeout in results.items(): if timeout > 0: timeout -= 1 results[result] = timeout else: result.terminate() results.pop(result)
完整代码如下:
from multiprocessing import Pool, Queue from queue import Empty import time def run_task(task, priority=0): print('Running %s with priority %d' % (task[0], priority)) time.sleep(1) return task tasks_queue = Queue() priority_queue = Queue() timeout_queue = Queue() delay_queue = Queue() tasks_queue.put(('pidancode.com',)) tasks_queue.put(('皮蛋编程',)) pool = Pool(processes=4) results = {} while True: try: task = tasks_queue.get(timeout=1) priority = priority_queue.get(timeout=1) timeout = timeout_queue.get(timeout=1) delay = delay_queue.get(timeout=1) result = pool.apply_async(run_task, task, priority=priority) results[result] = timeout time.sleep(delay) except Empty: if len(results) == 0: break for result, timeout in results.items(): if timeout > 0: timeout -= 1 results[result] = timeout else: result.terminate() results.pop(result)
此处没有实现真正的优先级机制,只是让任务可传入优先级参数,并打印出来以作演示。可以根据实际需求对此代码做些修改。
相关文章