实现基于Redis的多时分K线存储方案研究(分时k线redis存储)

2023-05-08 05:44:22 redis 方案 研究

多时分K线存储方案研究是K线图开发者探索的一个热门主题,它允许分析数据并基于复杂数据特征进行实时交易,优化投资组合和决策策略。在多时分K线数据存储方案中,Redis仍然是主流技术选择。因为Redis可以通过它的多功能特性提供快速的数据存储和读取,它是一种性能超强的内存分析引擎,同时也可以支持毫秒级的反应速度。本文将重点介绍一种基于Redis的多时分K线存储方案,也被称为”ODTK算法(Order Driven Time Series K线算法)”,它具有高效的扫描和存储能力,易于实现和使用。

基于Redis的多时分K线存储方案,我们首先需要准备定义基础表结构:

`Table Structure`

– Candle Symbol

– Candle Time Period

– Open Price

– Close Price

– High Price

– Low Price

– Volume

用Redis为多时间K线分配存储空间可以采用字典存储结构。

` Key`

– hashName

– field

– value

我们定义一个基于Redis的存储空间命名:

`Redis Structure`

– Keys

– Values

其中Key为Symbol + Timeperiod,然后存储多个字段和K线对应的值。具体格式如下:

`Key-Value`

– key : symbol + “_” + timeperiod

– value : open + “_” + close + “_” + high + “_” + low + “_” + volume

下一步要定义多时分K线算法,该算法将执行以下操作,实现存储空间的动态更新和维护:

`ODTK Algorithm`

– Get Records from Data Source

– Calculate Open Price

– Calculate High and Low Price

– Calculate Close Price

– Calculate Average Volume

– Push to Redis

以上是一种基于Redis的多时分K线存储方案的研究,该方案实现了快速的存储空间更新,可以有效的实现多时分K线的快速读取和浏览,是一种极为有效的多时分K线存储方案。

例子:

“`javascript

//定义Redis存储空间

var redisClient = redis.CreateClient();

//计算K线数据

const calculatedata = (timeperiod) => {

//获取历史数据

const records = GetRecordsFromSource(‘symbol’, timeperiod);

//计算开盘价

const openPrice = CalculateOpenPrice(records);

//计算最高价、最低价

const [highPrice, lowPrice] = CalcHighLowPrice(records);

//计算收盘价

const closePrice = CalculateClosePrice(records);

//计算平均成交量

const avgVolume = CalcAverageVolume(records);

//把数据存入Redis

const data = openPrice + “_” + highPrice + “_” + lowPrice + “_” + closePrice+ “_” + volume

redisClient.hset(‘symbol_’ + timeperiod, ‘data’, data);

}

				
	

相关文章