ValueError:无法为Entities中的多个范围中包含的令牌27设置实体
问题描述
我正在尝试将dataset
转换为.spacy
,方法是先在doc
中将其转换为DocBin
。可以通过GoogleDocs访问整个dataset
文件。
我运行以下函数:
def converter(data, outputFile):
nlp = spacy.blank("en") # load a new spacy model
doc_bin = DocBin() # create a DocBin object
for text, annot in tqdm(data): # data in previous format
doc = nlp.make_doc(text) # create doc object from text
ents = []
for start, end, label in annot["entities"]: # add character indexes
# supported modes: strict, contract, expand
span = doc.char_span(start, end, label=label, alignment_mode="strict")
# to avoid having the traceback;
# TypeError: object of type 'NoneType' has no len()
if span is None:
pass
else:
ents.append(span)
doc.ents = ents # label the text with the ents
doc_bin.add(doc)
doc_bin.to_disk(f"./{outputFile}.spacy") # save the docbin object
return f"Processed {len(doc_bin)}"
在dataset
上运行函数后,我获得了回溯:
ValueError: [E1010] Unable to set entity information for token 27 which is included in more than one span in entities, blocked, missing or outside.
仔细查看dataset
文件以查找引发此回溯的text
后,我发现了以下内容:
[('HereLongText..(abstract)',
{'entities': [('0', '27', 'SpecificDisease'),
('80', '93', 'SpecificDisease'),
('260', '278', 'SpecificDisease'),
('615', '628', 'SpecificDisease'),
('673', '691', 'SpecificDisease'),
('754', '772', 'SpecificDisease')]})]
我不知道如何解决此问题。
解决方案
我认为这应该会清楚地说明您的问题。以下是具有相同错误的代码的略微修改版本。
import spacy
from spacy.tokens import DocBin
from tqdm import tqdm
def converter(data, outputFile):
nlp = spacy.blank("en") # load a new spacy model
doc_bin = DocBin() # create a DocBin object
for text, annot in tqdm(data): # data in previous format
doc = nlp.make_doc(text) # create doc object from text
ents = []
for start, end, label in annot["entities"]: # add character indexes
# supported modes: strict, contract, expand
span = doc.char_span(start, end, label=label, alignment_mode="strict")
# to avoid having the traceback;
# TypeError: object of type 'NoneType' has no len()
if span is None:
pass
else:
ents.append(span)
doc.ents = ents # label the text with the ents
doc_bin.add(doc)
doc_bin.to_disk(f"./{outputFile}.spacy") # save the docbin object
return f"Processed {len(doc_bin)}"
data = [("I like cheese",
{"entities": [
(0, 1, "Sample"),
(0, 1, "Sample"), # Same thing twice
]})]
converter(data, "out.txt")
请注意,在这些示例中,完全相同的跨度有两个注释。如果删除其中一个批注,则不会出现错误。
您可能收到错误,因为您的批注重叠且不可用。
相关文章