ValueError:无法为Entities中的多个范围中包含的令牌27设置实体

2022-05-15 00:00:00 python nlp spacy spacy-3

问题描述

我正在尝试将dataset转换为.spacy,方法是先在doc中将其转换为DocBin。可以通过GoogleDocs访问整个dataset文件。

我运行以下函数:

def converter(data, outputFile):
    nlp = spacy.blank("en") # load a new spacy model
    doc_bin = DocBin() # create a DocBin object

    for text, annot in tqdm(data): # data in previous format
        doc = nlp.make_doc(text) # create doc object from text    
        ents = []
        
        for start, end, label in annot["entities"]: # add character indexes
            # supported modes: strict, contract, expand
            span = doc.char_span(start, end, label=label, alignment_mode="strict")
            # to avoid having the traceback; 
            # TypeError: object of type 'NoneType' has no len()
            if span is None:
                pass
            else:
                ents.append(span)
        doc.ents = ents # label the text with the ents
        doc_bin.add(doc)
        
    doc_bin.to_disk(f"./{outputFile}.spacy") # save the docbin object
    return f"Processed {len(doc_bin)}"

dataset上运行函数后,我获得了回溯: ValueError: [E1010] Unable to set entity information for token 27 which is included in more than one span in entities, blocked, missing or outside.

仔细查看dataset文件以查找引发此回溯的text后,我发现了以下内容:

[('HereLongText..(abstract)',
  {'entities': [('0', '27', 'SpecificDisease'),
    ('80', '93', 'SpecificDisease'),
    ('260', '278', 'SpecificDisease'),
    ('615', '628', 'SpecificDisease'),
    ('673', '691', 'SpecificDisease'),
    ('754', '772', 'SpecificDisease')]})]

我不知道如何解决此问题。


解决方案

我认为这应该会清楚地说明您的问题。以下是具有相同错误的代码的略微修改版本。

import spacy
from spacy.tokens import DocBin
from tqdm import tqdm

def converter(data, outputFile):
    nlp = spacy.blank("en")  # load a new spacy model
    doc_bin = DocBin()  # create a DocBin object

    for text, annot in tqdm(data):  # data in previous format
        doc = nlp.make_doc(text)  # create doc object from text
        ents = []

        for start, end, label in annot["entities"]:  # add character indexes
            # supported modes: strict, contract, expand

            span = doc.char_span(start, end, label=label, alignment_mode="strict")
            # to avoid having the traceback;
            # TypeError: object of type 'NoneType' has no len()
            if span is None:
                pass
            else:
                ents.append(span)
        doc.ents = ents  # label the text with the ents
        doc_bin.add(doc)

    doc_bin.to_disk(f"./{outputFile}.spacy")  # save the docbin object
    return f"Processed {len(doc_bin)}"


data = [("I like cheese", 
    {"entities": [
        (0, 1, "Sample"),
        (0, 1, "Sample"), # Same thing twice
        ]})]

converter(data, "out.txt")

请注意,在这些示例中,完全相同的跨度有两个注释。如果删除其中一个批注,则不会出现错误。

您可能收到错误,因为您的批注重叠且不可用。

相关文章