如何在合并1000多个文件时将CSV文件的名称作为值添加到一列中?
问题描述
我正在尝试使用以下代码合并1000多个CSV文件:
path = r'path_to_files/'
all_files = glob.glob(path + "/*.csv")
import shutil
with open('updated_thirteen_jan.csv','wb') as wfd:
for f in all_files:
with open(f,'rb') as fd:
shutil.copyfileobj(fd, wfd)
我使用上面的代码来避免内存崩溃问题,它工作得很好。但是,我想做以下代码为我做的事情:
path = r'path_to_files/'
all_files = glob.glob(path + "/*.csv")
fields = ['col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8']
li = []
first_one = True
for filename in all_files:
if not first_one: # if it is not the first csv file then skip the header row (row 0) of that file
skip_row = [0]
else:
skip_row = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, skiprows = skip_row, engine='python', usecols=fields)
df = df[(df['lang'] == 'en')]
filename = os.path.basename(filename)
df['file_name'] = filename
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
通过此代码,我希望能够执行列选择fileds
、row_skip
并将file_name
作为值添加。
有什么建议吗?
解决方案
如果内存是约束,则基于pandas
的解决方案是iterate over chunks of rows:
import os
import pandas as pd
print(pd.__version__)
# works with this version: '1.3.4'
# gen sample files
all_files = [f"{_}.csv" for _ in range(3)]
for filename in all_files:
df = pd.DataFrame(range(3))
df.to_csv(filename, index=False)
# combine into one
mode = "w"
header = True
for filename in all_files:
with pd.read_csv(
filename,
engine="python",
iterator=True,
chunksize=10_000,
) as reader:
for df in reader:
filename = os.path.basename(filename)
df["file_name"] = filename
df.to_csv("some_file.csv", index=False, mode=mode, header=header)
mode = "a"
header = False
相关文章