如何获得具有预处理和分类步骤的决策树管道的特征重要性?
问题描述
我正在尝试将决策树模型适用于UCI成人数据集。为此,我构建了以下管道:
nominal_features = ['workclass', 'education', 'marital-status', 'occupation',
'relationship', 'race', 'sex', 'native-country']
nominal_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='most_frequent')),
('ohe', OneHotEncoder(handle_unknown='ignore'))
])
numeric_features = ['age', 'fnlwgt', 'capital-gain', 'capital-loss', 'hours-per-week']
numeric_transformer = Pipeline(steps=[
('scaler', StandardScaler())
])
preprocessor = ColumnTransformer(
transformers=[
('numeric', numeric_transformer, numeric_features),
('nominal', nominal_transformer, nominal_features)
]) # remaining columns will be dropped by default
clf = Pipeline(steps=[
('preprocessor', preprocessor),
('classifier', DecisionTreeClassifier(criterion='entropy', random_state=0))
])
然后我通过调用
来适应我的模型clf.fit(X_train, y_train)
然后,当我尝试获取功能重要性时,
clf.named_steps['classifier'].feature_importances_
我得到一个形状数组(104,)
array([1.39312528e-01, 1.92086014e-01, 1.15276068e-01, 4.01797967e-02,
7.08805229e-02, 3.99687904e-03, 6.68727677e-03, 0.00000000e+00,
1.02021005e-02, 5.06637671e-03, 7.97826949e-03, 5.64939616e-03,
0.00000000e+00, 9.09583016e-04, 1.84022196e-03, 9.29047900e-04,
1.74001682e-04, 8.55362503e-05, 2.32440522e-03, 4.65023589e-04,
4.13278579e-03, 3.68265995e-03, 1.78503960e-02, 8.33035943e-03,
6.94454768e-03, 1.75988171e-02, 5.40933687e-04, 7.51299294e-03,
6.07480929e-03, 2.28627732e-03, 1.32219786e-03, 1.92990938e-01,
1.18517448e-03, 1.61377248e-03, 5.72167000e-04, 1.34920904e-03,
5.41685180e-03, 0.00000000e+00, 9.16416279e-03, 1.05824472e-02,
3.07744966e-03, 3.07152204e-03, 5.06657379e-03, 5.21819782e-03,
0.00000000e+00, 7.49534136e-03, 2.83936918e-03, 8.62398812e-03,
5.78720378e-03, 5.37536831e-03, 2.99744077e-03, 1.87247908e-03,
4.87696805e-04, 1.58422357e-03, 2.20761597e-03, 5.57396015e-03,
1.17619435e-03, 1.87465473e-03, 4.08710965e-03, 6.73508851e-04,
6.02887867e-03, 2.38887308e-03, 4.52029746e-03, 7.28018074e-05,
5.13158297e-04, 2.66768058e-04, 0.00000000e+00, 3.28378333e-04,
0.00000000e+00, 8.55362503e-05, 0.00000000e+00, 7.89886262e-04,
1.84475320e-04, 1.37879652e-03, 0.00000000e+00, 3.27800552e-04,
1.95189232e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 9.00792536e-04, 0.00000000e+00, 2.20606426e-04,
5.82787439e-04, 4.85000896e-04, 5.33409400e-04, 0.00000000e+00,
8.75840665e-04, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
4.65546160e-04, 3.37472507e-04, 2.50837357e-04, 2.52474592e-04,
0.00000000e+00, 1.47818105e-04, 3.06829767e-04, 3.73651596e-04,
1.58778645e-04, 4.40566013e-03, 8.55362503e-05, 2.51672361e-04])
这是不正确的,因为我只有13个功能。我知道原因是OneHotenCoding。
如何获取实际功能重要性?
解决方案
恐怕您在此无法获得您的初始功能的重要性。您的决策树对它们一无所知;它看到和知道的唯一事情就是编码的那些,其他什么都不知道。
您可能想尝试permutation importance,这比基于树的功能重要性有几个优势;它也很容易适用于管道-请参阅Permutation importance using a Pipeline in SciKit-Learn。
相关文章