TF2.2:从TensorFlow_Hub加载保存的模型失败,并返回`AttributeError:';_UserObject';对象没有属性';摘要';`
问题描述
系统信息: 巨蟒:3.6.9 TensorFlow:PIP提供的2.2.0 CPU包
问题:
我从tf-Hub获取https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4?tf-hub-format=compressed,然后将其解压缩到新目录中。
wget https://storage.googleapis.com/tfhub-modules/google/imagenet/resnet_v2_50/feature_vector/4.tar.gz
mkdir test_pb
mv 4.tar.gz test_pb
cd test_pb
tar -xvf 4.tar.gz
rm 4.tar.gz
cd ..
./test.py
https://storage.googleapis.com/tfhub-modules/google/imagenet/resnet_v2_50/feature_vector/4.tar.gz是TF-Hub中https://tfhub.dev/google/imagenet/resnet_v2_50/feature_vector/4的特征向量预训练模型。
test.py
是Python脚本,以下是独立代码:
#!/usr/bin/env python3
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import tensorflow as tf
print(tf.__version__)
resnet50v2_save_path = os.path.join('.', "./test_pb/")
loaded1 = tf.keras.models.load_model(resnet50v2_save_path)
print("Load done")
print("Signatures: ", loaded1.signatures)
print("Type: ", type(loaded1))
print(loaded1.summary())
输出如下:
2.2.0
2020-06-12 20:29:07.677555: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 1995455000 Hz
2020-06-12 20:29:07.678219: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x59eb130 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-12 20:29:07.678241: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
Load done
Signatures: _SignatureMap({})
Type: <class 'tensorflow.python.saved_model.load.Loader._recreate_base_user_object.<locals>._UserObject'>
Traceback (most recent call last):
File "./test.py", line 18, in <module>
print(loaded1.summary())
AttributeError: '_UserObject' object has no attribute 'summary'
这就是提到的错误。
为什么?
Thx
解决方案
模型为纯SavedModel,缺少keras_metadata.pb
文件,无法直接加载到Keras模型中。您必须像加载普通的SavedModel一样加载它,并将其包装在keras模型中,如下所示:
!wget https://storage.googleapis.com/tfhub-modules/google/imagenet/resnet_v2_50/feature_vector/4.tar.gz
!mkdir saved_model
!tar -xvf 4.tar.gz -C saved_model
import tensorflow as tf
import tensorflow_hub as hub
m = tf.keras.Sequential([hub.KerasLayer("saved_model", trainable=True),
tf.keras.layers.Dense(10, activation='softmax')
])
m.build([None, 224, 224, 3])
m.summary()
# Model: "sequential"
# _________________________________________________________________
# Layer (type) Output Shape Param #
# =================================================================
# keras_layer (KerasLayer) (None, 2048) 23564800
# _________________________________________________________________
# dense (Dense) (None, 10) 20490
# =================================================================
# Total params: 23,585,290
# Trainable params: 23,539,850
# Non-trainable params: 45,440
相关文章