在Python中获取点周围的多边形/多多边形的坐标
问题描述
我使用plotlys scattermapbox在点对象周围绘制多边形。我想从POI绘制一个半径为"x"英里的多边形。
我发现这很有帮助:https://plotly.com/python/filled-area-on-mapbox/。但是,在我的示例中,我需要动态定义多边形并获取其对应的坐标。
如何围绕中心点渲染和填充多边形?我可以使用MapBox来获取多边形几何图形吗?我们将多边形几何定义为从中心算起x miles
。
参考:https://docs.mapbox.com/mapbox-gl-js/style-spec/layers/#fill
此处的原始问题:Draw a polygon around point in scattermapbox using python
解决方案
- 使用此帮助器https://github.com/Turbo87/utm在GPS(WSG84/EPSG:4326)和UTM之间转换
- 您将POI圆/多边形半径表示为距离
x miles
,因此需要使用UTM投影将半径表示为距离 - 使用英国医院作为POI数据样本。如果没有明显的缩放级别,圆将不会显示,因为它们的半径只有1英里。插入具有纬度和经度列的任何其他数据框将非常简单
- 使用散点映射框作为样图,然后添加为相关点圆/多边形的图层
import shapely.geometry
import utm
import pandas as pd
import geopandas as gpd
import requests, io, json
import plotly.express as px
# need to use UTM to express radius as a distance. UTM is zoned, so if GPS coords are very widely distributed
# distance will be incorrect. zone is estimated from first GPS coordinate
# returns geopandas dataframe re-projected to GPS co-ordinates
# radius is expressed in metres
def circles(lonlat, radius=10 ** 4):
utm_coords = utm.from_latlon(lonlat[:, 1], lonlat[:, 0])
utmcrs = gpd.GeoDataFrame(
geometry=[shapely.geometry.Point(lonlat[0, 0], lonlat[0, 1])], crs="EPSG:4326"
).estimate_utm_crs()
return gpd.GeoDataFrame(
geometry=[
shapely.geometry.Point(easting, northing).buffer(radius)
for easting, northing in zip(utm_coords[0], utm_coords[1])
],
crs=utmcrs,
).to_crs("EPSG:4326")
# get some public addressess - hospitals. data that can be scattered
dfhos = pd.read_csv(io.StringIO(requests.get("http://media.nhschoices.nhs.uk/data/foi/Hospital.csv").text),
sep="¬",engine="python",)
# generate circles of diameter 1 mile, which is 1609.34 metres
gdf = circles(dfhos.head(20).loc[:, ["Longitude", "Latitude"]].values, radius=1609.34)
fig = (
px.scatter_mapbox(
dfhos.head(20),
lat="Latitude",
lon="Longitude",
color="Sector",
hover_data=["OrganisationName", "Postcode"],
)
.update_traces(marker={"size": 10})
.update_layout(
mapbox={
"style": "open-street-map",
"zoom": 9,
"center":{"lat":gdf.loc[0,"geometry"].centroid.y, "lon":gdf.loc[0,"geometry"].centroid.x},
"layers": [
{
"source": json.loads(gdf.geometry.to_json()),
"below": "traces",
"type": "line",
"color": "purple",
"line": {"width": 1.5},
}
],
},
margin={"l": 0, "r": 0, "t": 0, "b": 0},
)
)
fig.show()
相关文章