我该如何编写一个程序,让它以一个角度为基础,在球体周围的点上旋转,就像绕着它走一样?

我正在做一个项目,我需要(作为2D点)绕着3D球体漫步。我很难弄清楚如何在不扭曲极地的情况下实现这一点。基本上我想要向前,向后,向左,向右,以及左转,右转。我一直试图让它在球面坐标下工作,但我的函数似乎不正确。我能做些什么才能让它正常工作呢?(我使用的是p5.js库,使用的是JavaScript)

目前,我正在尝试将x和y变量分别映射到球面空间的phi和theta。然而,它似乎不起作用,我不确定,如果正确实施,这一点是否会绕着大圈移动。

我还使用了一个角度变量来移动x和y(cos(A),sin(A)),但我也不确定这是否有效。

我想我需要做的是与大圆圈导航相关的,但我不懂背后的数学原理。

指向我的当前版本的链接:https://editor.p5js.org/hpestock/sketches/FXtn82-0k

当前代码类似

var X,Y,Z;
X=0;
Y=0;
Z=0;

var A=0;

var scaler = 100;

var MOVE_FORWARD = true;
var MOVE_BACKWARD= false;
var MOVE_LEFT    = false;
var MOVE_RIGHT   = false;
var TURN_LEFT    = false;
var TURN_RIGHT   = false;

//var i=0;
var x = 0;
var y = 0;

function setup() {
  createCanvas(400, 400, WEBGL);
  x= 0;
  y= 0;
  A= 0;
  background(220);
}

function keyPressed(){
  if(key == "w"){
    MOVE_FORWARD = true;
  }else if(key == "ArrowLeft"){
    TURN_LEFT = true;
  }else if(key == "ArrowRight"){
    TURN_RIGHT = true;
  }
}

function keyReleased(){
  if(key == "w"){
    MOVE_FORWARD = false;
  }else if(key == "ArrowLeft"){
    TURN_LEFT = false;       
  }else if(key == "ArrowRight"){
    TURN_RIGHT = false;
  }
}

function draw() {
  
  if(MOVE_FORWARD){
    x+=0.005*cos(A);
    y+=0.005*sin(A);
  }
  if(TURN_LEFT){
    A+=PI/64;
  }
  if(TURN_RIGHT){
    A-=PI/64;
  }
  
  var xyz = Sph(1,y,x);
  X=xyz[0];
  Y=xyz[1];
  Z=xyz[2];
  background(220);
  sphere(scaler);
  push();
  translate(X*scaler,Y*scaler,Z*scaler);
  sphere(5);
  pop();
  
  /*i+=PI/32;
  if(i>2*PI){
     i=0;
     }*/
}

function Move(a,d){
  //
}

function Sph(p,t,h){
  //p = radius
  //t (theta) = 2d rotation
  //h (phi) = 3d roation
  return ([p*cos(h)*cos(t),p*cos(h)*sin(t),p*sin(h)]);
  
  //x=ρsinφcosθ,y=ρsinφsinθ, and z=ρcosφ
}

解决方案

我不知道Java脚本,但您可以实现以下函数(我是用Python语言实现的,希望您可以从它们中读出它们背后的数学/几何逻辑),这些函数允许您选择球体上的运动方向,沿着给定角度DS的步长沿大圆移动,以及更改运动方向。我假设运动是在单位球面上(半径为1)。如果不是,您需要将代码缩放到适当的半径。

import numpy as np
import math

def direct(r, a):
'''
given position-vector r on the unit sphere and initial angle a, 
measured from the meridian, i.e. direction north being a = 0,
the result is the unit vector t pointing in that direction 
'''
  e_z = np.array([0,0,1]) 
  u = np.cross(e_z, r)
  u = u / math.sqrt(u.dot(u))
  v = np.cross(r, u)
  t = math.cos(a) * v + math.sin(a) * u
  return r, t

def move(r, t, ds):
'''
given unit position-vector r and unit direction vector t on the unit sphere, 
make a step of arclength ds radians from point r in the direction of t along
the great circle that passes through r and tangent to t. The result is the
new position r_ and the new direction vector t_ still tangent to the same
great circle.
'''
  co = math.cos(ds)
  cs = math.sin(ds) 
  r_ =  co * r + si * t
  t_ = -si * r + cs * t
  return t_, t_

def redirect(r, t, da):

'''
given unit position-vector r and unit direction vector t on the unit sphere, 
rotate the vector t at an angle da. 
The result is the new direction vector t_

when da > 0 redirect right
when da < 0 redirect left
'''
  rot_axis = np.cross(r, t)
  t_ = math.cos(da) * t - math.sin(da) * rot_axis
  return r, t_

相关文章