Numpy如何使用np.umprod重写range函数中i的python
问题描述
我有两个python函数。第一个:
mt = np.array([1, 2, 3, 4, 5, 6, 7])
age, interest = 3, 0.5
def getnpx(mt, age, interest):
val = 1
initval = 1
for i in range(age, 6):
val = val * mt[i]
intval = val / (1 + interest) ** (i + 1 - age)
initval = initval + intval
return initval
输出为:
48.111111111111114
为了加快速度,我使用Numpy对其进行了矢量化:
def getnpx_(mt, age, interest):
print(np.cumprod(mt[age:6]) / (1 + interest)**np.arange(1, 7 - age))
return 1 + (np.cumprod(mt[age:6]) / (1 + interest)**np.arange(1, 7 - age)).sum()
getnpx_(mt, age, interest)
运行正常,输出仍为:
48.111111111111114
但是,我不知道如何使用numpy重写我的第二个函数:
pt1 = np.array([1, 2, 3, 4, 5, 6, 7])
pt2 = np.array([2, 4, 3, 4, 7, 4, 8])
pvaltable = np.array([0, 0, 0, 0, 0, 0, 0])
def jointpval(pt1, pt2, age1, age2):
j = age1
for i in range(age2, 6):
k = min(j, 135)
pvaltable[i] = pt1[k] * pt2[i]
j = j + 1
return pvaltable
jointpval(pt1, pt2, 3, 4)
输出:
array([ 0, 0, 0, 0, 28, 20, 0])
我希望能够转换循环
for i in range(age2, 6):
为类似以下内容:
np.cumprod(pt1[age:6])
最终输出应与:
相同array([ 0, 0, 0, 0, 28, 20, 0])
解决方案
我找到此解决方案:
import numpy as np
pt1 = np.array([1, 2, 3, 4, 5, 6, 7])
pt2 = np.array([2, 4, 3, 4, 7, 4, 8])
def jointpval(pt1, pt2, age1, age2):
pvaltable = np.zeros(len(pt1))
idx2 = np.arange(age2, 6)
idx1 = np.arange(len(idx2)) + age1
idx1 = np.where(idx1 > 135, 135, idx1)
pvaltable[idx2] = pt1[idx1] * pt2[idx2]
return pvaltable
WHEREjointpval(pt1, pt2, 3, 4)
返回
array([ 0., 0., 0., 0., 28., 20., 0.])
相关文章