如何使用Snowflake SQL查询的结果填充 pandas DataFrame?
问题描述
使用Python Connector我可以查询雪花:
import snowflake.connector
# Gets the version
ctx = snowflake.connector.connect(
user=USER,
password=PASSWORD,
account=ACCOUNT,
authenticator='https://XXXX.okta.com',
)
ctx.cursor().execute('USE warehouse MY_WH')
ctx.cursor().execute('USE MYDB.MYSCHEMA')
query = '''
select * from MYDB.MYSCHEMA.MYTABLE
LIMIT 10;
'''
cur = ctx.cursor().execute(query)
结果是snowflake.connector.cursor.SnowflakeCursor
。如何将其转换为 pandas DataFrame?
解决方案
您可以将DataFrame.from_records()
或pandas.read_sql()
与snowflake-sqlalchemy配合使用。雪花炼金术选项有一个更简单的API
pd.DataFrame.from_records(iter(cur), columns=[x[0] for x in cur.description])
将返回一个DataFrame,其中包含取自SQL结果的正确列名。iter(cur)
会将游标转换为迭代器,cur.description
提供列的名称和类型。
所以完整的代码将是
import snowflake.connector
import pandas as pd
# Gets the version
ctx = snowflake.connector.connect(
user=USER,
password=PASSWORD,
account=ACCOUNT,
authenticator='https://XXXX.okta.com',
)
ctx.cursor().execute('USE warehouse MY_WH')
ctx.cursor().execute('USE MYDB.MYSCHEMA')
query = '''
select * from MYDB.MYSCHEMA.MYTABLE
LIMIT 10;
'''
cur = ctx.cursor().execute(query)
df = pd.DataFrame.from_records(iter(cur), columns=[x[0] for x in cur.description])
如果您喜欢使用pandas.read_sql
,则可以
import pandas as pd
from sqlalchemy import create_engine
from snowflake.sqlalchemy import URL
url = URL(
account = 'xxxx',
user = 'xxxx',
password = 'xxxx',
database = 'xxx',
schema = 'xxxx',
warehouse = 'xxx',
role='xxxxx',
authenticator='https://xxxxx.okta.com',
)
engine = create_engine(url)
connection = engine.connect()
query = '''
select * from MYDB.MYSCHEMA.MYTABLE
LIMIT 10;
'''
df = pd.read_sql(query, connection)
相关文章