pandas 根据特定列值对数据框中的行进行分组
问题描述
我的数据框如下所示,
Input DataFrame
gw_mac mac
0 ac233fc015f6 dce83f3bc820
1 ac233fc015f6 ac233f264a4c
2 ac233fc015f6 ac233f264a4c
3 ac233fc015f6 dce83f3bc820
4 ac233fc015f6 ac233f264a4c
5 ac233fc015f6 ac233f264a4c
6 ac233fc015f6 dce83f3bc820
7 ac233fc015f6 e464eecba5eb
现在我需要根据列值"gw_mac"和"mac"对数据帧进行分组,我应该得到以下三个不同的组
Expected Output
Group1
gw_mac mac
0 ac233fc015f6 dce83f3bc820
3 ac233fc015f6 dce83f3bc820
6 ac233fc015f6 dce83f3bc820
Group2
gw_mac mac
1 ac233fc015f6 ac233f264a4c
2 ac233fc015f6 ac233f264a4c
4 ac233fc015f6 ac233f264a4c
5 ac233fc015f6 ac233f264a4c
Group3
gw_mac mac
7 ac233fc015f6 e464eecba5eb
解决方案
如果需要不同的GROUP BY列,则按groupby
对象循环:
for i, g in df.groupby(['gw_mac','mac']):
print (g)
gw_mac mac
1 ac233fc015f6 ac233f264a4c
2 ac233fc015f6 ac233f264a4c
4 ac233fc015f6 ac233f264a4c
5 ac233fc015f6 ac233f264a4c
gw_mac mac
0 ac233fc015f6 dce83f3bc820
3 ac233fc015f6 dce83f3bc820
6 ac233fc015f6 dce83f3bc820
gw_mac mac
7 ac233fc015f6 e464eecba5eb
相关文章