PANDA VALUE_COUNTS包含GROUP BY之前的所有值

问题描述

假设我有以下数据帧:

df = pd.DataFrame([['a',1, -1], ['a', 1, -1], ['b', 0, -1], ['c', -1, -1]] ,columns = ['col1', 'col2', 'col3'])
df
    col1    col2    col3
0   a       1       -1
1   a       1       -1
2   b       0       -1
3   c       -1      -1
现在我想按列对df进行分组,并分别计算col1列中的值出现的次数。

groupby_df = df.groupby('col1') 
for a,b in groupby_df:
    print("{0} -> 
{1}".format(a, b['col1'].value_counts().sort_index()))

我得到:

a -> 
a    2
Name: col1, dtype: int64
b -> 
b    1
Name: col1, dtype: int64
c -> 
c    1
Name: col1, dtype: int64

但是我想单独统计出现的次数,并且仍然包括所有列值,如下所示:

a -> 
a    2
b    0
c    0
Name: col1, dtype: int64
b -> 
a    0
b    1
c    0
Name: col1, dtype: int64
c -> 
a    0
b    0
c    1
Name: col1, dtype: int64

如有任何帮助,我们将不胜感激!


解决方案

尝试使用.reindex():

import pandas as pd

df = pd.DataFrame([['a',1, -1], ['a', 1, -1], ['b', 0, -1], ['c', -1, -1]] ,columns = ['col1', 'col2', 'col3'])

# Create index using unique values of col1.

uniques = pd.Index(df['col1'].unique())

# Group.

groupby_df = df.groupby('col1')

# Use reindex to assign and autoamtically align the value counts with the index.

for a, b in groupby_df:
    print(b['col1'].value_counts().sort_index().reindex(uniques, fill_value = 0))

给予:

a    2
b    0
c    0
Name: col1, dtype: int64
a    0
b    1
c    0
Name: col1, dtype: int64
a    0
b    0
c    1
Name: col1, dtype: int64

相关文章