Pandas中的GROUP BY AND SUM不丢失列
问题描述
我有一个数据帧,如下所示:
--------------------------------------------------------------------
|TradeGroup | Fund Name | Contribution | From | To |
| A | Fund_1 | 0.20 | 2013-01-01 | 2013-01-02 |
| B | Fund_1 | 0.10 | 2013-01-01 | 2013-01-02 |
| A | Fund_1 | 0.05 | 2013-01-03 | 2013-01-04 |
| B | Fund_1 | 0.45 | 2013-01-03 | 2013-01-04 |
--------------------------------------------------------------------
基本上,这是一个行业团体每天向基金捐款。我想要做的是总结一个交易团每天的所有贡献,以供进一步分析。 我想看到的是:
--------------------------------------------------------------------
|TradeGroup | Fund Name | Contribution | From | To |
| A | Fund_1 | 0.25 | 2013-01-01 | 2013-01-04 |
| B | Fund_1 | 0.55 | 2013-01-01 | 2013-01-04 |
--------------------------------------------------------------------
我无法使用Dataframe解决此问题。我已经试过
df.groupby('TradeGroup')['Contribution'].sum()
但是,这不起作用。与此等效的SQL将为
Select SUM(Ctp) from Table Group By TradeGroup.
任何帮助都将不胜感激。谢谢
sql
您需要确保贡献列是数字,而不是字符串,才能获得正确的匹配数字,就像在推荐答案中一样。我认为你收到的奇怪的"不"是因为你"投稿"栏目的字符串性质。则应执行以下操作:
import pandas as pd
import numpy as np
a=pd.DataFrame([['A','Fund_1','0.20','2013-01-01','2013-01-02'],
['B','Fund_1','0.10','2013-01-01','2013-01-02'],['A','Fund_1','0.05','2013-
01-03','2013-01-04'],['B','Fund_1','0.45','2013-01-03','2013-01-04']],
columns=['TraderGroup', 'Fund Name','Contribution','From', 'To'])
print a
a['Contribution'] = pd.to_numeric(a['Contribution'], errors='coerce')
b=a.groupby(['TraderGroup','Fund Name']).agg({'Contribution':np.sum,
'From':'min','To':'max'}).reset_index()
print b
相关文章