Ploly:如何在条形图中添加趋势线?

问题描述

我正在尝试将趋势线添加到plotly绘制的条形图

编码:

import plotly.express as px

fig = px.bar(count, x="date", y="count",trendline="ols")

fig.update_layout(
    xaxis_title="Date",
    yaxis_title = "Count"
)

fig.show()

错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-129-8b01de219d3c> in <module>
----> 1 fig = px.bar(count, x="date", y="count",trendline="ols")
      2 
      3 fig.update_layout(
      4     xaxis_title="Date",
      5     yaxis_title = "Count"

TypeError: bar() got an unexpected keyword argument 'trendline'

这里是 data

如何将趋势线成功添加到此绘图?


解决方案

px.bar没有trendline方法。由于您正在尝试trendline="ols",我猜您希望创建一条线性趋势线。看看您的数据,线性趋势线可能不是对您的数据集的最佳描述:

所以您必须自己添加趋势线。您仍然可以使用go.Bar使用条形图,但可能会考虑将趋势线显示为线,而不是更多的条形图。

关于非线性趋势,仔细研究scikit或statsmodels应该是非常值得的。一种简单的方法是在重新编码数据集之后估计对数线性趋势。您将看到,这比简单的线性趋势更能"捕捉"variable的指数增长:

但这是否足够好呢?我会让你来决定的。正如我已经说过的,您应该仔细查看链接的资源。

1地块代码:

from sklearn.linear_model import LinearRegression
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import datetime

# data
df=pd.DataFrame({'date': {0: '12.10.2019',
                  1: '13.10.2019',
                  2: '14.10.2019',
                  3: '15.10.2019',
                  4: '16.10.2019',
                  5: '17.10.2019',
                  6: '18.10.2019',
                  7: '19.10.2019',
                  8: '20.10.2019',
                  9: '21.10.2019',
                  10: '22.10.2019',
                  11: '23.10.2019',
                  12: '24.10.2019',
                  13: '25.10.2019',
                  14: '26.10.2019',
                  15: '27.10.2019',
                  16: '28.10.2019',
                  17: '29.10.2019',
                  18: '30.10.2019',
                  19: '31.10.2019',
                  20: '01.11.2019',
                  21: '02.11.2019',
                  22: '03.11.2019',
                  23: '04.11.2019',
                  24: '05.11.2019',
                  25: '06.11.2019',
                  26: '07.11.2019',
                  27: '08.11.2019',
                  28: '09.11.2019',
                  29: '10.11.2019',
                  30: '11.11.2019',
                  31: '12.11.2019',
                  32: '13.11.2019',
                  33: '14.11.2019',
                  34: '15.11.2019',
                  35: '16.11.2019',
                  36: '17.11.2019',
                  37: '18.11.2019',
                  38: '19.11.2019',
                  39: '20.11.2019',
                  40: '21.11.2019',
                  41: '22.11.2019',
                  42: '23.11.2019',
                  43: '24.11.2019',
                  44: '25.11.2019',
                  45: '26.11.2019',
                  46: '27.11.2019',
                  47: '28.11.2019',
                  48: '29.11.2019',
                  49: '30.11.2019',
                  50: '01.12.2019',
                  51: '02.12.2019',
                  52: '03.12.2019',
                  53: '04.12.2019',
                  54: '05.12.2019',
                  55: '06.12.2019',
                  56: '07.12.2019',
                  57: '08.12.2019',
                  58: '09.12.2019',
                  59: '10.12.2019',
                  60: '11.12.2019',
                  61: '12.12.2019',
                  62: '13.12.2019',
                  63: '14.12.2019',
                  64: '15.12.2019',
                  65: '16.12.2019',
                  66: '17.12.2019',
                  67: '18.12.2019',
                  68: '19.12.2019',
                  69: '20.12.2019',
                  70: '21.12.2019',
                  71: '22.12.2019',
                  72: '23.12.2019',
                  73: '24.12.2019',
                  74: '25.12.2019',
                  75: '26.12.2019',
                  76: '27.12.2019',
                  77: '28.12.2019',
                  78: '29.12.2019',
                  79: '30.12.2019',
                  80: '31.12.2019',
                  81: '01.01.2020',
                  82: '02.01.2020',
                  83: '03.01.2020',
                  84: '04.01.2020',
                  85: '05.01.2020',
                  86: '06.01.2020',
                  87: '07.01.2020',
                  88: '08.01.2020',
                  89: '09.01.2020',
                  90: '10.01.2020',
                  91: '11.01.2020',
                  92: '12.01.2020',
                  93: '13.01.2020',
                  94: '14.01.2020',
                  95: '15.01.2020',
                  96: '16.01.2020',
                  97: '17.01.2020',
                  98: '18.01.2020',
                  99: '19.01.2020',
                  100: '20.01.2020',
                  101: '21.01.2020',
                  102: '22.01.2020',
                  103: '23.01.2020',
                  104: '24.01.2020',
                  105: '25.01.2020',
                  106: '26.01.2020',
                  107: '27.01.2020',
                  108: '28.01.2020',
                  109: '29.01.2020',
                  110: '30.01.2020',
                  111: '31.01.2020'},
                 'count': {0: 19,
                  1: 12,
                  2: 13,
                  3: 18,
                  4: 13,
                  5: 19,
                  6: 15,
                  7: 14,
                  8: 12,
                  9: 6,
                  10: 15,
                  11: 15,
                  12: 12,
                  13: 17,
                  14: 13,
                  15: 14,
                  16: 11,
                  17: 11,
                  18: 11,
                  19: 9,
                  20: 14,
                  21: 15,
                  22: 11,
                  23: 13,
                  24: 14,
                  25: 14,
                  26: 16,
                  27: 16,
                  28: 17,
                  29: 13,
                  30: 14,
                  31: 14,
                  32: 12,
                  33: 6,
                  34: 14,
                  35: 12,
                  36: 16,
                  37: 15,
                  38: 19,
                  39: 18,
                  40: 17,
                  41: 17,
                  42: 17,
                  43: 17,
                  44: 19,
                  45: 15,
                  46: 20,
                  47: 21,
                  48: 19,
                  49: 18,
                  50: 22,
                  51: 21,
                  52: 21,
                  53: 18,
                  54: 21,
                  55: 23,
                  56: 22,
                  57: 17,
                  58: 25,
                  59: 28,
                  60: 24,
                  61: 26,
                  62: 23,
                  63: 23,
                  64: 22,
                  65: 26,
                  66: 25,
                  67: 24,
                  68: 24,
                  69: 24,
                  70: 24,
                  71: 27,
                  72: 26,
                  73: 28,
                  74: 28,
                  75: 29,
                  76: 34,
                  77: 31,
                  78: 38,
                  79: 37,
                  80: 34,
                  81: 45,
                  82: 43,
                  83: 44,
                  84: 49,
                  85: 47,
                  86: 54,
                  87: 49,
                  88: 57,
                  89: 62,
                  90: 65,
                  91: 55,
                  92: 67,
                  93: 69,
                  94: 72,
                  95: 45,
                  96: 89,
                  97: 87,
                  98: 90,
                  99: 121,
                  100: 140,
                  101: 173,
                  102: 163,
                  103: 171,
                  104: 183,
                  105: 165,
                  106: 189,
                  107: 201,
                  108: 230,
                  109: 290,
                  110: 311,
                  111: 321}})
Y=df['count']
X=df.index

# regression
reg = LinearRegression().fit(np.vstack(X), Y)
df['bestfit'] = reg.predict(np.vstack(X))

# plotly figure setup
fig=go.Figure()
fig.add_trace(go.Bar(name='X vs Y', x=X, y=Y.values))
fig.add_trace(go.Scatter(name='line of best fit', x=X, y=df['bestfit'], mode='lines'))

# plotly figure layout
fig.update_layout(xaxis_title = 'X', yaxis_title = 'Y')

fig.show()

绘图2代码:

from sklearn.linear_model import LinearRegression
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import datetime

# data
df=pd.DataFrame({'date': {0: '12.10.2019',
                  1: '13.10.2019',
                  2: '14.10.2019',
                  3: '15.10.2019',
                  4: '16.10.2019',
                  5: '17.10.2019',
                  6: '18.10.2019',
                  7: '19.10.2019',
                  8: '20.10.2019',
                  9: '21.10.2019',
                  10: '22.10.2019',
                  11: '23.10.2019',
                  12: '24.10.2019',
                  13: '25.10.2019',
                  14: '26.10.2019',
                  15: '27.10.2019',
                  16: '28.10.2019',
                  17: '29.10.2019',
                  18: '30.10.2019',
                  19: '31.10.2019',
                  20: '01.11.2019',
                  21: '02.11.2019',
                  22: '03.11.2019',
                  23: '04.11.2019',
                  24: '05.11.2019',
                  25: '06.11.2019',
                  26: '07.11.2019',
                  27: '08.11.2019',
                  28: '09.11.2019',
                  29: '10.11.2019',
                  30: '11.11.2019',
                  31: '12.11.2019',
                  32: '13.11.2019',
                  33: '14.11.2019',
                  34: '15.11.2019',
                  35: '16.11.2019',
                  36: '17.11.2019',
                  37: '18.11.2019',
                  38: '19.11.2019',
                  39: '20.11.2019',
                  40: '21.11.2019',
                  41: '22.11.2019',
                  42: '23.11.2019',
                  43: '24.11.2019',
                  44: '25.11.2019',
                  45: '26.11.2019',
                  46: '27.11.2019',
                  47: '28.11.2019',
                  48: '29.11.2019',
                  49: '30.11.2019',
                  50: '01.12.2019',
                  51: '02.12.2019',
                  52: '03.12.2019',
                  53: '04.12.2019',
                  54: '05.12.2019',
                  55: '06.12.2019',
                  56: '07.12.2019',
                  57: '08.12.2019',
                  58: '09.12.2019',
                  59: '10.12.2019',
                  60: '11.12.2019',
                  61: '12.12.2019',
                  62: '13.12.2019',
                  63: '14.12.2019',
                  64: '15.12.2019',
                  65: '16.12.2019',
                  66: '17.12.2019',
                  67: '18.12.2019',
                  68: '19.12.2019',
                  69: '20.12.2019',
                  70: '21.12.2019',
                  71: '22.12.2019',
                  72: '23.12.2019',
                  73: '24.12.2019',
                  74: '25.12.2019',
                  75: '26.12.2019',
                  76: '27.12.2019',
                  77: '28.12.2019',
                  78: '29.12.2019',
                  79: '30.12.2019',
                  80: '31.12.2019',
                  81: '01.01.2020',
                  82: '02.01.2020',
                  83: '03.01.2020',
                  84: '04.01.2020',
                  85: '05.01.2020',
                  86: '06.01.2020',
                  87: '07.01.2020',
                  88: '08.01.2020',
                  89: '09.01.2020',
                  90: '10.01.2020',
                  91: '11.01.2020',
                  92: '12.01.2020',
                  93: '13.01.2020',
                  94: '14.01.2020',
                  95: '15.01.2020',
                  96: '16.01.2020',
                  97: '17.01.2020',
                  98: '18.01.2020',
                  99: '19.01.2020',
                  100: '20.01.2020',
                  101: '21.01.2020',
                  102: '22.01.2020',
                  103: '23.01.2020',
                  104: '24.01.2020',
                  105: '25.01.2020',
                  106: '26.01.2020',
                  107: '27.01.2020',
                  108: '28.01.2020',
                  109: '29.01.2020',
                  110: '30.01.2020',
                  111: '31.01.2020'},
                 'count': {0: 19,
                  1: 12,
                  2: 13,
                  3: 18,
                  4: 13,
                  5: 19,
                  6: 15,
                  7: 14,
                  8: 12,
                  9: 6,
                  10: 15,
                  11: 15,
                  12: 12,
                  13: 17,
                  14: 13,
                  15: 14,
                  16: 11,
                  17: 11,
                  18: 11,
                  19: 9,
                  20: 14,
                  21: 15,
                  22: 11,
                  23: 13,
                  24: 14,
                  25: 14,
                  26: 16,
                  27: 16,
                  28: 17,
                  29: 13,
                  30: 14,
                  31: 14,
                  32: 12,
                  33: 6,
                  34: 14,
                  35: 12,
                  36: 16,
                  37: 15,
                  38: 19,
                  39: 18,
                  40: 17,
                  41: 17,
                  42: 17,
                  43: 17,
                  44: 19,
                  45: 15,
                  46: 20,
                  47: 21,
                  48: 19,
                  49: 18,
                  50: 22,
                  51: 21,
                  52: 21,
                  53: 18,
                  54: 21,
                  55: 23,
                  56: 22,
                  57: 17,
                  58: 25,
                  59: 28,
                  60: 24,
                  61: 26,
                  62: 23,
                  63: 23,
                  64: 22,
                  65: 26,
                  66: 25,
                  67: 24,
                  68: 24,
                  69: 24,
                  70: 24,
                  71: 27,
                  72: 26,
                  73: 28,
                  74: 28,
                  75: 29,
                  76: 34,
                  77: 31,
                  78: 38,
                  79: 37,
                  80: 34,
                  81: 45,
                  82: 43,
                  83: 44,
                  84: 49,
                  85: 47,
                  86: 54,
                  87: 49,
                  88: 57,
                  89: 62,
                  90: 65,
                  91: 55,
                  92: 67,
                  93: 69,
                  94: 72,
                  95: 45,
                  96: 89,
                  97: 87,
                  98: 90,
                  99: 121,
                  100: 140,
                  101: 173,
                  102: 163,
                  103: 171,
                  104: 183,
                  105: 165,
                  106: 189,
                  107: 201,
                  108: 230,
                  109: 290,
                  110: 311,
                  111: 321}})
Y=np.log(df['count'])
X=df.index

# log regression

df_log=pd.DataFrame({'X':df.index,
                     'Y': np.log(df['count'])})
df_log.set_index('X', inplace = True)

reg = LinearRegression().fit(np.vstack(df_log.index), df_log['Y'])
df_log['bestfit'] = reg.predict(np.vstack(df_log.index))

df_new=pd.DataFrame({'X':df.index,
                     'Y':np.exp(df['count']),
                     'trend':np.exp(df_log['bestfit'])})

df_new.set_index('X', inplace=True)

# plotly figure setup
fig=go.Figure()
fig.add_trace(go.Bar(name='X vs Y', x=df_new.index, y=df['count']))
fig.add_trace(go.Scatter(name='line of best fit', x=df_new.index, y=df_new['trend'], mode='lines'))

# plotly figure layout
fig.update_layout(xaxis_title = 'X', yaxis_title = 'Y')

fig.show()

相关文章