谷歌地图两个圆的交点
有没有一种简单的方法来获取两个
var R = 6371;//公里var dLat = (lat2-lat1).toRad();var dLon = (lon2-lon1).toRad();var lat1 = lat1.toRad();var lat2 = lat2.toRad();var a = Math.sin(dLat/2) * Math.sin(dLat/2) +Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
和我们的
AC = c/2
如果给定的圆半径Rd是公里,那么
AB = Rd/R = Rd/6371
现在我们可以找到角度了
A = arccos(tg(AC) * ctg(AB))
起始方位(AF方向):
var y = Math.sin(dLon) * Math.cos(lat2);var x = Math.cos(lat1)*Math.sin(lat2) -Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);var brng = Math.atan2(y, x);
交叉点的方位:
B_bearing = brng - AD_轴承 = brng + A
交点坐标:
var latB = Math.asin( Math.sin(lat1)*Math.cos(Rd/R) +Math.cos(lat1)*Math.sin(Rd/R)*Math.cos(B_bearing));var lonB = lon1.toRad() + Math.atan2(Math.sin(B_bearing)*Math.sin(Rd/R)*Math.cos(lat1),Math.cos(Rd/R)-Math.sin(lat1)*Math.sin(lat2));
同样适用于 D_bearing
latB, lonB 以弧度为单位
Is there an easy way to get the lat
/lng
of the intersection points (if available) of two circles in Google Maps API V3? Or should I go with the hard way?
EDIT : In my problem, circles always have the same radius, in case that makes the solution easier.
解决方案Yes, for equal circles rather simple solution could be elaborated:
Let's first circle center is A point, second circle center is F, midpoint is C, and intersection points are B,D. ABC is right-angle spherical triangle with right angle C.
We want to find angle A - this is deviation angle from A-F direction. Spherical trigonometry (Napier's rules for right spherical triangles) gives us formula:
cos(A)= tg(AC) * ctg(AB)
where one symbol denote spherical angle, double symbols denote great circle arcs' angles (AB, AC). We can see that AB = circle radius (in radians, of course), AC = half-distance between A and F on the great circle arc.
To find AC (and other values) - I'll use code from this excellent page
var R = 6371; // km
var dLat = (lat2-lat1).toRad();
var dLon = (lon2-lon1).toRad();
var lat1 = lat1.toRad();
var lat2 = lat2.toRad();
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
and our
AC = c/2
If circle radius Rd is given is kilometers, then
AB = Rd / R = Rd / 6371
Now we can find angle
A = arccos(tg(AC) * ctg(AB))
Starting bearing (AF direction):
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
Intersection points' bearings:
B_bearing = brng - A
D_bearing = brng + A
Intersection points' coordinates:
var latB = Math.asin( Math.sin(lat1)*Math.cos(Rd/R) +
Math.cos(lat1)*Math.sin(Rd/R)*Math.cos(B_bearing) );
var lonB = lon1.toRad() + Math.atan2(Math.sin(B_bearing)*Math.sin(Rd/R)*Math.cos(lat1),
Math.cos(Rd/R)-Math.sin(lat1)*Math.sin(lat2));
and the same for D_bearing
latB, lonB are in radians
相关文章