Python 脚本在进展过程中变慢?

2022-01-24 00:00:00 python performance iteration

问题描述

I have a simulation running that has this basic structure:

from time import time

def CSV(*args):
    #write * args to .CSV file
    return

def timeleft(a,L,period):
    print(#details on how long last period took, ETA#)

for L in range(0,6,4):
    for a in range(1,100):
        timeA = time()

            for t in range(1,1000):

                ## Manufacturer in Supply Chain ##

                inventory_accounting_lists.append(#simple calculations#)

                    # Simulation to determine the optimal B-value (Basestock level)

                    for B in range(1,100):
                        for tau in range(1,1000):
                                ## simple inventory accounting operations##

                ## Distributor in Supply Chain ##

                inventory_accounting_lists.append(#simple calculations#)

                    # Simulation to determine the optimal B-value (Basestock level)

                    for B in range(1,100):
                        for tau in range(1,1000):
                                ## simple inventory accounting operations##

                ## Wholesaler in Supply Chain ##

                inventory_accounting_lists.append(#simple calculations#)

                    # Simulation to determine the optimal B-value (Basestock level)

                    for B in range(1,100):
                        for tau in range(1,1000):
                                ## simple inventory accounting operations##

                ## Retailer in Supply Chain ##

                inventory_accounting_lists.append(#simple calculations#)

                    # Simulation to determine the optimal B-value (Basestock level)

                    for B in range(1,100):
                        for tau in range(1,1000):
                                ## simple inventory accounting operations##


        CSV(Simulation_Results)

        timeB = time()

        timeleft(a,L,timeB-timeA)

As the script continues, it seems to be getting slower and slower. Here is what it is for these values (and it increases linearly as a increases).

  • L = 0, a = 1: 1.15 minutes
  • L = 0, a = 99: 1.7 minutes
  • L = 2, a = 1: 2.7 minutes
  • L = 2, a = 99: 5.15 minutes
  • L = 4, a = 1: 4.5 minutes
  • L = 4, a = 15: 4.95 minutes (this is the latest value it has reached)

Why would each iteration take longer? Each iteration of the loop essentially resets everything except for a master global list, which is being added to each time. However, loops inside each "period" aren't accessing this master list -- they are accessing the same local list every time.

EDIT 1: I will post the simulation code here, in case anyone wants to wade through it, but I warn you, it is rather long, and the variable names are probably unnecessarily confusing.

#########
a = 0.01
L = 0
total = 1000
sim = 500
inv_cost = 1
bl_cost = 4
#########

# Functions

import random
from time import time
time0 = time()

# function to report ETA etc.

def timeleft(a,L,period_time):
    if L==0:
        periods_left = ((1-a)*100)-1+2*99
    if L==2:
        periods_left = ((1-a)*100)-1+99
    if L==4:
        periods_left = ((1-a)*100)-1+0*99

    minute_time = period_time/60

    minutes_left = (periods_left*period_time)/60
    hours_left = (periods_left*period_time)/3600
    percentage_complete = 100*((297-periods_left)/297)

    print("Time for last period = ","%.2f" % minute_time," minutes")

    print("%.2f" % percentage_complete,"% complete")
    if hours_left<1:
        print("%.2f" % minutes_left," minutes left")
    else:
        print("%.2f" % hours_left," hours left")
    print("")
    return

def dcopy(inList):
    if isinstance(inList, list):
        return list( map(dcopy, inList) )
    return inList

# Save values to .CSV file

def CSV(a,L,I_STD_1,I_STD_2,I_STD_3,I_STD_4,O_STD_0,
        O_STD_1,O_STD_2,O_STD_3,O_STD_4):

    pass

# Initialization

# These are the global, master lists of data

I_STD_1 = [[0],[0],[0]]
I_STD_2 = [[0],[0],[0]]
I_STD_3 = [[0],[0],[0]]
I_STD_4 = [[0],[0],[0]]

O_STD_0 = [[0],[0],[0]]
O_STD_1 = [[0],[0],[0]]
O_STD_2 = [[0],[0],[0]]
O_STD_3 = [[0],[0],[0]]
O_STD_4 = [[0],[0],[0]]

for L in range(0,6,2):

    # These are local lists that are appended to at the end of every period

    I_STD_1_L = []
    I_STD_2_L = []
    I_STD_3_L = []
    I_STD_4_L = []

    O_STD_0_L = []
    O_STD_1_L = []
    O_STD_2_L = []
    O_STD_3_L = []
    O_STD_4_L = []

    test = []

    for n in range(1,100):          # THIS is the start of the 99 value loop

        a = n/100

        print ("L=",L,", alpha=",a)

        # Initialization for each Period

        F_1 = [0,10]            # Forecast
        F_2 = [0,10]
        F_3 = [0,10]
        F_4 = [0,10]

        R_0 = [10]              # Items Received
        R_1 = [10]
        R_2 = [10]
        R_3 = [10]
        R_4 = [10]

        for i in range(L):
            R_1.append(10)
            R_2.append(10)
            R_3.append(10)
            R_4.append(10)

        I_1 = [10]              # Final Inventory
        I_2 = [10]
        I_3 = [10]
        I_4 = [10]

        IP_1 = [10+10*L]        # Inventory Position
        IP_2 = [10+10*L]
        IP_3 = [10+10*L]
        IP_4 = [10+10*L]

        O_1 = [10]              # Items Ordered
        O_2 = [10]
        O_3 = [10]
        O_4 = [10]

        BL_1 = [0]              # Backlog
        BL_2 = [0]
        BL_3 = [0]
        BL_4 = [0]

        OH_1 = [20]             # Items on Hand
        OH_2 = [20]
        OH_3 = [20]
        OH_4 = [20]

        OR_1 = [10]             # Order received from customer
        OR_2 = [10]
        OR_3 = [10]
        OR_4 = [10]

        Db_1 = [10]             # Running Average Demand
        Db_2 = [10]
        Db_3 = [10]
        Db_4 = [10]

        var_1 = [0]             # Running Variance in Demand
        var_2 = [0]
        var_3 = [0]
        var_4 = [0]

        B_1 = [IP_1[0]+10]      # Optimal Basestock
        B_2 = [IP_2[0]+10]
        B_3 = [IP_3[0]+10]
        B_4 = [IP_4[0]+10]

        D = [0,10]              # End constomer demand

        for i in range(total+1):
            D.append(9)
            D.append(12)
            D.append(8)
            D.append(11)

        period = [0]

        from time import time
        timeA = time()

        # 1000 time periods t

        for t in range(1,total+1):

            period.append(t)


            #### MANUFACTURER ####

            # Manufacturing order from previous time period put into production
            R_4.append(O_4[t-1])

            #recieve shipment from supplier, calculate items OH HAND
            if I_4[t-1]<0:
                OH_4.append(R_4[t])
            else:
                OH_4.append(I_4[t-1]+R_4[t])

            # Recieve and dispatch order, update Inventory and Backlog for time t

            if (O_3[t-1] + BL_4[t-1]) <= OH_4[t]:               # No Backlog
                I_4.append(OH_4[t] - (O_3[t-1] + BL_4[t-1]))
                BL_4.append(0)
                R_3.append(O_3[t-1]+BL_4[t-1])
            else:
                I_4.append(OH_4[t] - (O_3[t-1] + BL_4[t-1]))    # Backlogged
                BL_4.append(-I_4[t])
                R_3.append(OH_4[t])

            # Update Inventory Position
            IP_4.append(IP_4[t-1] + O_4[t-1] - O_3[t-1])

            # Use exponential smoothing to forecast future demand
            future_demand = (1-a)*F_4[t] + a*O_3[t-1]
            F_4.append(future_demand)

            # Calculate D_bar(t) and Var(t)
            Db_4.append((1/t)*sum(O_3[0:t]))
            s = 0
            for i in range(0,t):
                s+=(O_3[i]-Db_4[t])**2

            if t==1:
                var_4.append(0)                                 # var(1) = 0
            else:
                var_4.append((1/(t-1))*s)

            # Simulation to determine B(t)
            S_BC_4 = [10000000000]*10
            Run_4 = [0]*10
            for B in range(10,500):

                S_OH_4 = OH_4[:]
                S_I_4 = I_4[:]
                S_R_4 = R_4[:]
                S_BL_4 = BL_4[:]
                S_IP_4 = IP_4[:]
                S_O_4 = O_4[:]

                # Update O(t)(the period just before the simulation begins)
                # using the B value for the simulation
                if B - S_IP_4[t] > 0:              
                    S_O_4.append(B - S_IP_4[t])
                else:
                    S_O_4.append(0)

                c = 0

                for i in range(t+1,t+sim+1):

                    S_R_4.append(S_O_4[i-1])

                    #simulate demand
                    demand = -1
                    while demand <0:
                        demand = random.normalvariate(F_4[t+1],(var_4[t])**(.5))

                    # Receive simulated shipment, calculate simulated items on hand

                    if S_I_4[i-1]<0:
                        S_OH_4.append(S_R_4[i])
                    else:
                        S_OH_4.append(S_I_4[i-1]+S_R_4[i])

                    # Receive and send order, update Inventory and Backlog (simulated)

                    owed = (demand + S_BL_4[i-1])
                    S_I_4.append(S_OH_4[i] - owed)
                    if owed <= S_OH_4[i]:                               # No Backlog
                        S_BL_4.append(0)
                        c += inv_cost*S_I_4[i]
                    else:
                        S_BL_4.append(-S_I_4[i])                        # Backlogged
                        c += bl_cost*S_BL_4[i]

                    # Update Inventory Position
                    S_IP_4.append(S_IP_4[i-1] + S_O_4[i-1] - demand)

                    # Update Order, Upstream member dispatches goods
                    if (B-S_IP_4[i]) > 0:
                        S_O_4.append(B - S_IP_4[i])
                    else:
                        S_O_4.append(0)

                # Log Simulation costs for that B-value
                S_BC_4.append(c)

                # If the simulated costs are increasing, stop
                if B>11:
                    dummy = []

                    for i in range(0,10):
                        dummy.append(S_BC_4[B-i]-S_BC_4[B-i-1])
                    Run_4.append(sum(dummy)/float(len(dummy)))

                    if Run_4[B-3] > 0 and B>20:
                        break
                else:
                    Run_4.append(0)

            # Use minimum cost as new B(t)
            var = min((val, idx) for (idx, val) in enumerate(S_BC_4))
            optimal_B = var[1]
            B_4.append(optimal_B)

            # Calculate O(t)
            if B_4[t] - IP_4[t] > 0:
                O_4.append(B_4[t] - IP_4[t])
            else:
                O_4.append(0)




            #### DISTRIBUTOR ####

            #recieve shipment from supplier, calculate items OH HAND
            if I_3[t-1]<0:
                OH_3.append(R_3[t])
            else:
                OH_3.append(I_3[t-1]+R_3[t])

            # Recieve and dispatch order, update Inventory and Backlog for time t

            if (O_2[t-1] + BL_3[t-1]) <= OH_3[t]:               # No Backlog
                I_3.append(OH_3[t] - (O_2[t-1] + BL_3[t-1]))
                BL_3.append(0)
                R_2.append(O_2[t-1]+BL_3[t-1])
            else:
                I_3.append(OH_3[t] - (O_2[t-1] + BL_3[t-1]))    # Backlogged
                BL_3.append(-I_3[t])
                R_2.append(OH_3[t])

            # Update Inventory Position
            IP_3.append(IP_3[t-1] + O_3[t-1] - O_2[t-1])

            # Use exponential smoothing to forecast future demand
            future_demand = (1-a)*F_3[t] + a*O_2[t-1]
            F_3.append(future_demand)

            # Calculate D_bar(t) and Var(t)
            Db_3.append((1/t)*sum(O_2[0:t]))
            s = 0
            for i in range(0,t):
                s+=(O_2[i]-Db_3[t])**2

            if t==1:
                var_3.append(0)                                 # var(1) = 0
            else:
                var_3.append((1/(t-1))*s)

            # Simulation to determine B(t)
            S_BC_3 = [10000000000]*10
            Run_3 = [0]*10

            for B in range(10,500):
                S_OH_3 = OH_3[:]
                S_I_3 = I_3[:]
                S_R_3 = R_3[:]
                S_BL_3 = BL_3[:]
                S_IP_3 = IP_3[:]
                S_O_3 = O_3[:]

                # Update O(t)(the period just before the simulation begins)
                # using the B value for the simulation
                if B - S_IP_3[t] > 0:              
                    S_O_3.append(B - S_IP_3[t])
                else:
                    S_O_3.append(0)
                c = 0
                for i in range(t+1,t+sim+1):

                    #simulate demand
                    demand = -1
                    while demand <0:
                        demand = random.normalvariate(F_3[t+1],(var_3[t])**(.5))

                    S_R_3.append(S_O_3[i-1])

                    # Receive simulated shipment, calculate simulated items on hand
                    if S_I_3[i-1]<0:
                        S_OH_3.append(S_R_3[i])
                    else:
                        S_OH_3.append(S_I_3[i-1]+S_R_3[i])

                    # Receive and send order, update Inventory and Backlog (simulated)
                    owed = (demand + S_BL_3[i-1])
                    S_I_3.append(S_OH_3[i] - owed)
                    if owed <= S_OH_3[i]:                               # No Backlog
                        S_BL_3.append(0)
                        c += inv_cost*S_I_3[i]
                    else:
                        S_BL_3.append(-S_I_3[i])                        # Backlogged
                        c += bl_cost*S_BL_3[i]

                    # Update Inventory Position
                    S_IP_3.append(S_IP_3[i-1] + S_O_3[i-1] - demand)

                    # Update Order, Upstream member dispatches goods
                    if (B-S_IP_3[i]) > 0:
                        S_O_3.append(B - S_IP_3[i])
                    else:
                        S_O_3.append(0)

                # Log Simulation costs for that B-value
                S_BC_3.append(c)

                # If the simulated costs are increasing, stop
                if B>11:
                    dummy = []

                    for i in range(0,10):
                        dummy.append(S_BC_3[B-i]-S_BC_3[B-i-1])
                    Run_3.append(sum(dummy)/float(len(dummy)))

                    if Run_3[B-3] > 0 and B>20:
                        break
                else:
                    Run_3.append(0)

            # Use minimum cost as new B(t)
            var = min((val, idx) for (idx, val) in enumerate(S_BC_3))
            optimal_B = var[1]
            B_3.append(optimal_B)

            # Calculate O(t)
            if B_3[t] - IP_3[t] > 0:
                O_3.append(B_3[t] - IP_3[t])
            else:
                O_3.append(0)



            #### WHOLESALER ####

            #recieve shipment from supplier, calculate items OH HAND
            if I_2[t-1]<0:
                OH_2.append(R_2[t])
            else:
                OH_2.append(I_2[t-1]+R_2[t])

            # Recieve and dispatch order, update Inventory and Backlog for time t

            if (O_1[t-1] + BL_2[t-1]) <= OH_2[t]:               # No Backlog
                I_2.append(OH_2[t] - (O_1[t-1] + BL_2[t-1]))
                BL_2.append(0)
                R_1.append(O_1[t-1]+BL_2[t-1])

            else:
                I_2.append(OH_2[t] - (O_1[t-1] + BL_2[t-1]))    # Backlogged
                BL_2.append(-I_2[t])
                R_1.append(OH_2[t])

            # Update Inventory Position
            IP_2.append(IP_2[t-1] + O_2[t-1] - O_1[t-1])

            # Use exponential smoothing to forecast future demand
            future_demand = (1-a)*F_2[t] + a*O_1[t-1]
            F_2.append(future_demand)

            # Calculate D_bar(t) and Var(t)
            Db_2.append((1/t)*sum(O_1[0:t]))
            s = 0
            for i in range(0,t):
                s+=(O_1[i]-Db_2[t])**2

            if t==1:
                var_2.append(0)                                 # var(1) = 0
            else:
                var_2.append((1/(t-1))*s)

            # Simulation to determine B(t)
            S_BC_2 = [10000000000]*10
            Run_2 = [0]*10

            for B in range(10,500):
                S_OH_2 = OH_2[:]
                S_I_2 = I_2[:]
                S_R_2 = R_2[:]
                S_BL_2 = BL_2[:]
                S_IP_2 = IP_2[:]
                S_O_2 = O_2[:]

                # Update O(t)(the period just before the simulation begins)
                # using the B value for the simulation
                if B - S_IP_2[t] > 0:              
                    S_O_2.append(B - S_IP_2[t])
                else:
                    S_O_2.append(0)
                c = 0

                for i in range(t+1,t+sim+1):

                    #simulate demand
                    demand = -1
                    while demand <0:
                        demand = random.normalvariate(F_2[t+1],(var_2[t])**(.5))

                    # Receive simulated shipment, calculate simulated items on hand
                    S_R_2.append(S_O_2[i-1])

                    if S_I_2[i-1]<0:
                        S_OH_2.append(S_R_2[i])
                    else:
                        S_OH_2.append(S_I_2[i-1]+S_R_2[i])

                    # Receive and send order, update Inventory and Backlog (simulated)

                    owed = (demand + S_BL_2[i-1])
                    S_I_2.append(S_OH_2[i] - owed)
                    if owed <= S_OH_2[i]:                               # No Backlog
                        S_BL_2.append(0)
                        c += inv_cost*S_I_2[i]
                    else:
                        S_BL_2.append(-S_I_2[i])                        # Backlogged
                        c += bl_cost*S_BL_2[i]

                    # Update Inventory Position
                    S_IP_2.append(S_IP_2[i-1] + S_O_2[i-1] - demand)

                    # Update Order, Upstream member dispatches goods
                    if (B-S_IP_2[i]) > 0:
                        S_O_2.append(B - S_IP_2[i])
                    else:
                        S_O_2.append(0)

                # Log Simulation costs for that B-value
                S_BC_2.append(c)

                # If the simulated costs are increasing, stop
                if B>11:
                    dummy = []
                    for i in range(0,10):
                        dummy.append(S_BC_2[B-i]-S_BC_2[B-i-1])
                    Run_2.append(sum(dummy)/float(len(dummy)))

                    if Run_2[B-3] > 0 and B>20:
                        break
                else:
                    Run_2.append(0)

            # Use minimum cost as new B(t)
            var = min((val, idx) for (idx, val) in enumerate(S_BC_2))
            optimal_B = var[1]
            B_2.append(optimal_B)

            # Calculate O(t)
            if B_2[t] - IP_2[t] > 0:
                O_2.append(B_2[t] - IP_2[t])
            else:
                O_2.append(0)





            #### RETAILER ####

            #recieve shipment from supplier, calculate items OH HAND
            if I_1[t-1]<0:
                OH_1.append(R_1[t])
            else:
                OH_1.append(I_1[t-1]+R_1[t])

            # Recieve and dispatch order, update Inventory and Backlog for time t

            if (D[t] +BL_1[t-1]) <= OH_1[t]:              # No Backlog
                I_1.append(OH_1[t] - (D[t] + BL_1[t-1]))
                BL_1.append(0)
                R_0.append(D[t]+BL_1[t-1])
            else:
                I_1.append(OH_1[t] - (D[t] + BL_1[t-1]))  # Backlogged
                BL_1.append(-I_1[t])
                R_0.append(OH_1[t])

            # Update Inventory Position
            IP_1.append(IP_1[t-1] + O_1[t-1] - D[t])

            # Use exponential smoothing to forecast future demand
            future_demand = (1-a)*F_1[t] + a*D[t]
            F_1.append(future_demand)

            # Calculate D_bar(t) and Var(t)
            Db_1.append((1/t)*sum(D[1:t+1]))
            s = 0
            for i in range(1,t+1):
                s+=(D[i]-Db_1[t])**2

            if t==1:                                            # Var(1) = 0
                var_1.append(0)
            else:
                var_1.append((1/(t-1))*s)

            # Simulation to determine B(t)
            S_BC_1 = [10000000000]*10
            Run_1 = [0]*10
            for B in range(10,500):
                S_OH_1 = OH_1[:]
                S_I_1 = I_1[:]
                S_R_1 = R_1[:]
                S_BL_1 = BL_1[:]
                S_IP_1 = IP_1[:]
                S_O_1 = O_1[:]

                # Update O(t)(the period just before the simulation begins)
                # using the B value for the simulation
                if B - S_IP_1[t] > 0:              
                    S_O_1.append(B - S_IP_1[t])
                else:
                    S_O_1.append(0)

                c=0
                for i in range(t+1,t+sim+1):

                    #simulate demand
                    demand = -1
                    while demand <0:
                        demand = random.normalvariate(F_1[t+1],(var_1[t])**(.5))

                    S_R_1.append(S_O_1[i-1])

                    # Receive simulated shipment, calculate simulated items on hand
                    if S_I_1[i-1]<0:
                        S_OH_1.append(S_R_1[i])
                    else:
                        S_OH_1.append(S_I_1[i-1]+S_R_1[i])

                    # Receive and send order, update Inventory and Backlog (simulated)
                    owed = (demand + S_BL_1[i-1])
                    S_I_1.append(S_OH_1[i] - owed)
                    if owed <= S_OH_1[i]:                               # No Backlog
                        S_BL_1.append(0)
                        c += inv_cost*S_I_1[i]
                    else:
                        S_BL_1.append(-S_I_1[i])                        # Backlogged
                        c += bl_cost*S_BL_1[i]

                    # Update Inventory Position
                    S_IP_1.append(S_IP_1[i-1] + S_O_1[i-1] - demand)

                    # Update Order, Upstream member dispatches goods
                    if (B-S_IP_1[i]) > 0:
                        S_O_1.append(B - S_IP_1[i])
                    else:
                        S_O_1.append(0)

                # Log Simulation costs for that B-value
                S_BC_1.append(c)

                # If the simulated costs are increasing, stop
                if B>11:
                    dummy = []
                    for i in range(0,10):
                        dummy.append(S_BC_1[B-i]-S_BC_1[B-i-1])
                    Run_1.append(sum(dummy)/float(len(dummy)))

                    if Run_1[B-3] > 0 and B>20:
                        break
                else:
                    Run_1.append(0)

            # Use minimum as your new B(t)
            var = min((val, idx) for (idx, val) in enumerate(S_BC_1))
            optimal_B = var[1]
            B_1.append(optimal_B)

            # Calculate O(t)
            if B_1[t] - IP_1[t] > 0:
                O_1.append(B_1[t] - IP_1[t])
            else:
                O_1.append(0)


        ### Calculate the Standard Devation of the last half of time periods ###

        def STD(numbers):
            k = len(numbers)
            mean = sum(numbers) / k
            SD = (sum([dev*dev for dev in [x-mean for x in numbers]])/(k-1))**.5
            return SD

        start = (total//2)+1

        # Only use the last half of the time periods to calculate the standard deviation

        I_STD_1_L.append(STD(I_1[start:]))
        I_STD_2_L.append(STD(I_2[start:]))
        I_STD_3_L.append(STD(I_3[start:]))
        I_STD_4_L.append(STD(I_4[start:]))

        O_STD_0_L.append(STD(D[start:]))
        O_STD_1_L.append(STD(O_1[start:]))
        O_STD_2_L.append(STD(O_2[start:]))
        O_STD_3_L.append(STD(O_3[start:]))
        O_STD_4_L.append(STD(O_4[start:]))

        from time import time
        timeB = time()

        timeleft(a,L,timeB-timeA)

        I_STD_1[L//2] = I_STD_1_L[:]
        I_STD_2[L//2] = I_STD_2_L[:]
        I_STD_3[L//2] = I_STD_3_L[:]
        I_STD_4[L//2] = I_STD_4_L[:]

        O_STD_0[L//2] = O_STD_0_L[:]
        O_STD_1[L//2] = O_STD_1_L[:]
        O_STD_2[L//2] = O_STD_2_L[:]
        O_STD_3[L//2] = O_STD_3_L[:]
        O_STD_4[L//2] = O_STD_4_L[:]

        CSV(a,L,I_STD_1,I_STD_2,I_STD_3,I_STD_4,O_STD_0,
            O_STD_1,O_STD_2,O_STD_3,O_STD_4)


from time import time
timeE = time()

print("Run Time: ",(timeE-time0)/3600," hours")

解决方案

This would be a good time to look at a profiler. You can profile the code to determine where time is being spent. It would appear likely that you issue is in the simulation code, but without being able to see that code the best help you're likely to get going to be vague.

Edit in light of added code:

You're doing a fair amount of copying of lists, which while not terribly expensive can consume a lot of time.

I agree the your code is probably unnecessarily confusing and would advise you to clean up the code. Changing the confusing names to meaningful ones may help you find where you're having a problem.

Finally, it may be the case that your simulation is simply computationally expensive. You might want to consider looking into a SciPy, Pandas, or some other Python mathematic package to get better performance and perhaps better tools for expressing the model you're simulating.

相关文章