尝试在 DataFrame.pivot 中使用多索引时出现 ValueError

2022-01-22 00:00:00 python pandas dataframe pivot

问题描述

我已阅读 pandas: how to run a pivot with a multi-index? 但它无法解决我的问题.

I have read pandas: how to run a pivot with a multi-index? but it could not solve my problem.

给定下面的数据框:

import pandas as pd
df = pd.DataFrame({
    "date": ["20180920"] * 6,
    "id": ["A123456789"] * 6,
    "test": ["a", "b", "c", "d", "e", "f"],
    "result": [70, 90, 110, "(-)", "(+)", 0.3],
    "ref": ["< 90", "70 - 100", "100 - 120", "(-)", "(-)", "< 1"]
})

我想扩展 test 列,使用 result 中的值,并忽略 ref.换句话说,期望的输出是这样的:

I'd like to spread the test column, use the values in result, and ignore ref. In other words, the desired output is like:

       date          id      a   b    c    d    e    f
0  20180920  A123456789     70  90  110  (-)  (+)  0.3

所以我尝试了 df.pivot(index=["date", "id"], columns="test", values="result"),但它失败了 ValueError: 传递值的长度是 6,索引意味着 2.我认为它与如果传递一个数组,它必须与数据的长度相同"有关.在 pivot_table 文档中,但我就是不明白这是什么意思.有人可以详细说明一下吗?

So I tried df.pivot(index=["date", "id"], columns="test", values="result"), but it failed with ValueError: Length of passed values is 6, index implies 2. I think it is related to "If an array is passed, it must be the same length as the data." in pivot_table documentation, but I just don't understand what it means. Can someone elaborate that please?

顺便说一句,我终于通过 df.drop(columns="ref").set_index(["date", "id", "test"]).unstack(level=2).这是唯一正确的方法吗?

BTW, I finally get my desired output by df.drop(columns="ref").set_index(["date", "id", "test"]).unstack(level=2). Is it the only correct way?


解决方案

pivot 可以用,但是代码有点疯狂:

pivot is possible use, but code is a bit crazy:

df = (df.set_index(["date", "id"])
        .pivot(columns="test")['result']
        .reset_index()
        .rename_axis(None, axis=1)
     )
print (df)

       date          id   a   b    c    d    e    f
0  20180920  A123456789  70  90  110  (-)  (+)  0.3

关于文档,您可以查看 issue 16578 和 pandas0.24.0 应该是改进的文档或者也许是对使用 MultiIndex 的新支持?issue 8160 也有点不清楚.

About docs you can check issue 16578 and in pandas 0.24.0 should be improved docs or maybe new support for working with MultiIndex? A bit unclear also from issue 8160.

在我看来,您的最后一个代码应该只改进一点(与@Vaishali 相同的解决方案) - 通过在 set_index 之后选择来创建 Series with MultiIndexunstack 移除 level,因为默认情况下是 unstacked 最后一层 MultiIndex - Series.unstack:

In my opinion your last code should be only a bit improved (same solution like @Vaishali) - create Series with MultiIndex by selecting after set_index and for unstack remove level, because by default is unstacked last level of MultiIndex - Series.unstack:

level : int, string, 或者这些的列表,默认最后一级

level : int, string, or list of these, default last level

要取消堆叠的关卡,可以传递关卡名称

Level(s) to unstack, can pass level name

#all 3 return same output
df.set_index(["date", "id", "test"])['result'].unstack()
df.set_index(["date", "id", "test"])['result'].unstack(level=2)
df.set_index(["date", "id", "test"])['result'].unstack(level=-1)

相关文章