如何使用python将重复的行移动到列中
问题描述
我很难弄清楚如何用 python 做到这一点.我有下表:
I'm having a very tough time trying to figure out how to do this with python. I have the following table:
NAMES VALUE
john_1 1
john_2 2
john_3 3
bro_1 4
bro_2 5
bro_3 6
guy_1 7
guy_2 8
guy_3 9
我想去:
NAMES VALUE1 VALUE2 VALUE3
john 1 2 3
bro 4 5 6
guy 7 8 9
我已经尝试过使用 pandas,所以我首先拆分索引 (NAMES),然后我可以创建新列,但我无法将值索引到正确的列.
I have tried with pandas, so I first split the index (NAMES) and I can create the new columns but I have trouble indexing the values to the right column.
至少有人能给我一个解决这个问题的方向吗?我不希望有完整的代码(我知道这不受欢迎),但欢迎提供任何帮助.
Can someone at least give me a direction where the solution to this problem is? I don't expect a full code (I know that this is not appreciated) but any help is welcome.
解决方案
拆分NAMES
列后,使用.pivot
来重塑你的 DataFrame.
After splitting the NAMES
column, use .pivot
to reshape your DataFrame.
# Split Names and Pivot.
df['NAME_NBR'] = df['NAMES'].str.split('_').str.get(1)
df['NAMES'] = df['NAMES'].str.split('_').str.get(0)
df = df.pivot(index='NAMES', columns='NAME_NBR', values='VALUE')
# Rename columns and reset the index.
df.columns = ['VALUE{}'.format(c) for c in df.columns]
df.reset_index(inplace=True)
如果你想圆滑,你可以在一行中进行拆分:
If you want to be slick, you can do the split in a single line:
df['NAMES'], df['NAME_NBR'] = zip(*[s.split('_') for s in df['NAMES']])
相关文章