将 pandas DataFrame 旋转为正确的格式:`DataError: No numeric types to aggregate`
问题描述
这是我想要操作的 pandas DataFrame:
Here is a pandas DataFrame I would like to manipulate:
import pandas as pd
data = {"grouping": ["item1", "item1", "item1", "item2", "item2", "item2", "item2", ...],
"labels": ["A", "B", "C", "A", "B", "C", "D", ...],
"count": [5, 1, 8, 3, 731, 189, 9, ...]}
df = pd.DataFrame(data)
print(df)
>>> grouping labels count
0 item1 A 5
1 item1 B 1
2 item1 C 8
3 item2 A 3
4 item2 B 731
5 item2 C 189
6 item2 D 9
7 ... ... ....
我想将此数据框展开"为以下格式:
I would like to "unfold" this dataframe into the following format:
grouping A B C D
item1 5 1 8 3
item2 3 731 189 9
.... ........
如何做到这一点?我认为这会起作用:
How would one do this? I would think that this would work:
pd.pivot_table(df,index=["grouping", "labels"]
但我收到以下错误:
DataError: No numeric types to aggregate
解决方案
有四种惯用的 pandas
方法可以做到这一点.
There are four idiomatic pandas
ways to do this.
- 分组列之间没有重复.不需要聚合
枢轴
set_index
数据透视表
分组方式
枢轴
df.pivot('grouping', 'labels', 'count')
set_index
df.set_index(['grouping', 'labels'])['count'].unstack()
pivot_table
df.pivot_table('count', 'grouping', 'labels')
groupby
df.groupby(['grouping', 'labels'])['count'].sum().unstack()
全部收益
labels A B C D grouping item1 5.0 1.0 8.0 NaN item2 3.0 731.0 189.0 9.0
时机
使用
groupby
、set_index
或pivot_table
方法,您可以使用fill_value=0轻松填充缺失值代码>
With the
groupby
,set_index
, orpivot_table
approach, you can easily fill in missing values withfill_value=0
df.pivot_table('count', 'grouping', 'labels', fill_value=0) df.groupby(['grouping', 'labels'])['count'].sum().unstack(fill_value=0) df.set_index(['grouping', 'labels'])['count'].sum().unstack(fill_value=0)
全部收益
labels A B C D grouping item1 5 1 8 0 item2 3 731 189 9
<小时>
关于
groupby
的其他想法因为我们不需要任何聚合.如果我们想使用
groupby
,我们可以通过使用影响较小的聚合器来最小化隐式聚合的影响.Because we don't require any aggregation. If we wanted to use
groupby
, we can minimize the impact of the implicit aggregation by utilizing a less impactful aggregator.df.groupby(['grouping', 'labels'])['count'].max().unstack()
或
df.groupby(['grouping', 'labels'])['count'].first().unstack()
定时
groupby
相关文章