Plotly:如何更改 plotly express 散点图的颜色方案?
问题描述
我正在尝试使用
但是,我想尝试更改颜色方案,即为每个物种呈现的颜色.
我已阅读:
那么连续变量呢?
考虑以下代码段:
将 plotly.express 导入为 pxdf = px.data.iris()fig = px.scatter(df, x="sepal_width", y="sepal_length",color="sepal_length", color_continuous_scale=px.colors.sequential.Viridis)图.show()
运行它会产生这个情节:
您可以将颜色更改为
dir(px.colors.sequential)
下可用的任何其他主题,例如color_continuous_scale=px.colors.sequential.Inferno
,以及得到这个情节:这里可能引起混淆的是,设置
color='species
并保持color_continuous_scale=px.colors.sequential.Inferno
会给你这个情节:p>该图现在直接跳回到使用默认的绘图颜色,没有给你任何关于
color_continuous_scale=px.colors.sequential.Inferno 的警告代码>没有效果.这是因为
species
是一个具有这些不同值的分类变量:['setosa', 'versicolor', 'virginica']
,所以color_continuous_scale
被简单地忽略了.要使color_continuous_scale
生效,您必须使用数值,例如sepal_length = [5.1, 4.9, 4.7, 4.6, 5. , 5.4, ...]
这让我们回到了我最初对分类值的回答:
<块引用>结合使用关键字参数
continuous_colorscale
px.colors.qualitative
I am trying to work with
plotly
, specificallyploty express
, to build a few visualizations.One of the things I am building is a scatterplot
I have some code below, that produces a nice scatterplot:
import plotly.graph_objs as go, pandas as pd, plotly.express as px df = pd.read_csv('iris.csv') fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species', marker_colorscale=px.colors.sequential.Viridis) fig.show()
However, I want to try and change the colorscheme, i.e., the colors presented for each species.
I have read:
- https://plotly.com/python/builtin-colorscales/
- https://plotly.com/python/colorscales/
- https://plotly.com/python/v3/colorscales/
But can not get the colors to change.
Trying:
fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species', marker_colorscale=px.colors.sequential.Viridis)
yields:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-6-78a9d58dce23> in <module> 2 # https://plotly.com/python/line-and-scatter/ 3 fig = px.scatter(df, x='sepal_length', y='sepal_width', ----> 4 color='species', marker_colorscale=px.colors.sequential.Viridis) 5 fig.show() TypeError: scatter() got an unexpected keyword argument 'marker_colorscale'
Trying
Trying:
fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species', continuous_colorscale=px.colors.sequential.Viridis)
yields:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-6-78a9d58dce23> in <module> 2 # https://plotly.com/python/line-and-scatter/ 3 fig = px.scatter(df, x='sepal_length', y='sepal_width', ----> 4 color='species', continuous_colorscale=px.colors.sequential.Viridis) 5 fig.show() TypeError: scatter() got an unexpected keyword argument 'continuous_colorscale'
How can I change the colors used in a
解决方案plotly
visualization?Generally, changing the color scheme for a plotly express figure is very straight-forward. What's causing the problems here is the fact that
species
is a categorical variable. Continuous or numerical values are actually easier, but we'll get to that in a bit.For categorical values, using
color_discrete_map
is a perfectly valid, albeit cumbersome approach. I prefer using the keyword argumentcontinuous_colorscale
in combination withpx.colors.qualitative.Antique
, whereAntique
can be changed to any of the discrete color schemes available in plotly express. Just rundir(px.colors.qualitative)
to see what are available to you in the plotly version you are running:['Alphabet', 'Antique', 'Bold', 'D3', 'Dark2', 'Dark24', 'G10',......]
Code 1:
import plotly.express as px df = px.data.iris() fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", color_discrete_sequence=px.colors.qualitative.Antique) fig.show()
Plot 1:
So what about continuous variables?
Consider the following snippet:
import plotly.express as px df = px.data.iris() fig = px.scatter(df, x="sepal_width", y="sepal_length", color="sepal_length", color_continuous_scale=px.colors.sequential.Viridis) fig.show()
Running this will produce this plot:
You can change the colors to any other theme available under
dir(px.colors.sequential)
, for examplecolor_continuous_scale=px.colors.sequential.Inferno
, and get this plot:What's possibly causing confusion here, is that setting
color='species
, and keepingcolor_continuous_scale=px.colors.sequential.Inferno
will give you this plot:The figure now jumps straight back to using the default plotly colors, without giving you any warning about
color_continuous_scale=px.colors.sequential.Inferno
not having an effect. This is becausespecies
is a categorical variable with these different values :['setosa', 'versicolor', 'virginica']
, socolor_continuous_scale
is simply ignored. Forcolor_continuous_scale
to take effect you'll have to use a numerical value, likesepal_length = [5.1, 4.9, 4.7, 4.6, 5. , 5.4, ...]
And this brings us right back to my initial answer for categorical values:
Use the keyword argument
continuous_colorscale
in combination withpx.colors.qualitative
相关文章