基于 if-else 条件和查找创建新的 pandas 数据框列
问题描述
我有一个 pandas 数据框,我需要根据 if-else 条件创建一个新列.这个问题已经在这里多次出现(例如,Creating基于 if-elif-else 条件的新列).
I have a pandas dataframe and I need to create a new column based on an if-else condition. This question already came up here multiple times (e.g., Creating a new column based on if-elif-else condition).
但是,我无法应用建议的解决方案,因为我还需要在列表中查找值以检查条件.我无法使用建议的解决方案执行此操作,因为我不确定如何在外部函数中访问我的查找列表.我的查找列表需要是全局的,我想避免这种情况.我觉得应该有更好的方法来做到这一点.
However, I cannot apply the proposed solution, since I also need to look up values in a list in order to check the condition. I cannot do this with the proposed solution, because I am not sure how I can access my lookup-list in the external function. My lookup-list would need to be global, which I want to avoid. I have the feeling there should be a better way to do this.
考虑以下数据框df
:
letters
A
B
C
D
E
F
我还有一个包含查找值的列表:
I also have a list which contains lookup values:
lookup = [C,D]
现在,我想在我的数据框中创建一个新列,其中包含 1
如果相应的值包含在 lookup
和 0
如果这些值不在 lookup
中.
Now, I want to create a new column in my dataframe which contains 1
if the respective value is contained in lookup
and 0
if the values is not in lookup
.
典型的方法是:
df.apply(helper, axis=1)
def helper(row):
if(row['letters'].isin(lookup)):
row['result'] = 1
else:
row['result'] = 0
但是,我不知道如何在 helper()
中访问 lookup
而不使其成为全局对象.
However, I do not know how I can access lookup
in helper()
without making it global.
结果应该是这样的:
letters result
A 0
B 0
C 1
D 1
E 0
F 0
解决方案
虽然这个问题和问题很相似:如何在数据框的某些行的所有列上使用pandas应用函数
Although this question is very similar to the question: How to use pandas apply function on all columns of some rows of data frame
我认为这里值得展示几个方法,在一行中使用 np.where
和从 isin
、isin
将返回一个布尔系列,其中任何行都包含列表中的任何匹配项:
I think here it's worth showing a couple methods, on a single line using np.where
with a boolean mask generated from isin
, isin
will return a boolean Series where any rows contain any matches in your list:
In [71]:
lookup = ['C','D']
df['result'] = np.where(df['letters'].isin(lookup), 1, 0)
df
Out[71]:
letters result
0 A 0
1 B 0
2 C 1
3 D 1
4 E 0
5 F 0
这里使用 2 个 loc
语句并使用 ~
反转掩码:
here using 2 loc
statements and using ~
to invert the mask:
In [72]:
df.loc[df['letters'].isin(lookup),'result'] = 1
df.loc[~df['letters'].isin(lookup),'result'] = 0
df
Out[72]:
letters result
0 A 0
1 B 0
2 C 1
3 D 1
4 E 0
5 F 0
相关文章