错误“只能比较标记相同的系列对象"和 sort_index
问题描述
我有两个数据框 df1
df2
具有相同的行数和列数以及变量,我正在尝试比较布尔变量 choice代码> 在两个数据框中.然后使用
if/else
来操作数据.但是当我尝试比较布尔变量时似乎有些错误.
I have two dataframes df1
df2
with the same numbers of rows and columns and variables, and I'm trying to compare the boolean variable choice
in the two dataframes. Then use if/else
to manipulate the data. But something seems wrong when I try to compare the boolean var.
这是我的数据框示例和代码:
Here are my dataframes sample and codes:
#df1
v_100 choice #boolean
7 True
0 True
7 False
2 True
#df2
v_100 choice #boolean
1 False
2 True
74 True
6 True
def lastTwoTrials_outcome():
df1 = df.iloc[5::6, :] #df1 and df2 are extracted from the same dataframe first
df2 = df.iloc[4::6, :]
if df1['choice'] != df2['choice']: # if "choice" is different in the two dataframes
df1['v_100'] = (df1['choice'] + df2['choice']) * 0.5
这是错误:
if df1['choice'] != df2['choice']:
File "path", line 818, in wrapper
raise ValueError(msg)
ValueError: Can only compare identically-labeled Series objects
我在这里发现了同样的错误,和一个答案建议 sort_index
首先,但我真的不明白为什么?谁能详细解释一下(如果这是正确的解决方案)?
I found the same error here, and an answer suggests to sort_index
first, but I don't really understand why though? Can anyone explain more in detail please (if that's the correct solution)?
谢谢!
解决方案
我觉得你需要 reset_index
用于相同的索引值,然后是 comapare - 创建新列最好使用 mask
或 numpy.where
:
I think you need reset_index
for same index values and then comapare - for create new column is better use mask
or numpy.where
:
另外 +
使用 |
因为使用布尔值.
Also instead +
use |
because working with booleans.
df1 = df1.reset_index(drop=True)
df2 = df2.reset_index(drop=True)
df1['v_100'] = df1['choice'].mask(df1['choice'] != df2['choice'],
(df1['choice'] + df2['choice']) * 0.5)
df1['v_100'] = np.where(df1['choice'] != df2['choice'],
(df1['choice'] | df2['choice']) * 0.5,
df1['choice'])
样品:
print (df1)
v_100 choice
5 7 True
6 0 True
7 7 False
8 2 True
print (df2)
v_100 choice
4 1 False
5 2 True
6 74 True
7 6 True
<小时>
df1 = df1.reset_index(drop=True)
df2 = df2.reset_index(drop=True)
print (df1)
v_100 choice
0 7 True
1 0 True
2 7 False
3 2 True
print (df2)
v_100 choice
0 1 False
1 2 True
2 74 True
3 6 True
df1['v_100'] = df1['choice'].mask(df1['choice'] != df2['choice'],
(df1['choice'] | df2['choice']) * 0.5)
print (df1)
v_100 choice
0 0.5 True
1 1.0 True
2 0.5 False
3 1.0 True
相关文章