从网络图有效地创建邻接矩阵(反之亦然)Python NetworkX
问题描述
我正在尝试创建网络图并从中生成稀疏矩阵.从维基百科 拉普拉斯矩阵
示例中,我决定尝试使用 networkx
I'm trying to get into creating network graphs and generating sparse matrices from them. From the wikipedia Laplacian matrix
example, I decided to try and recreate the following network graph using networkx
如何在邻接矩阵
和网络图
之间有效地转换?
How can one EFFICIENTLY convert between an adjacency matrix
and a network graph
?
例如,如果我有一个网络图,如何快速将其转换为邻接矩阵,如果我有一个邻接图,如何有效地将其转换为网络图.
For example, if I have a network graph, how can I quickly convert it to an adjacency matrix and if I have an adjacency graph how can I efficiently convert it to a network graph.
下面是我的代码,我觉得对于大型网络来说效率很低.
Below is my code for doing it and I feel like it's pretty inefficient for larger networks.
#!/usr/bin/python
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
import pandas as pd
%matplotlib inline
#Adjacent matrix
adj_matrix = np.matrix([[0,1,0,0,1,0],[1,0,1,0,1,0],[0,1,0,1,0,0],[0,0,1,0,1,1],[1,1,0,1,0,0],[0,0,0,1,0,0]])
adj_sparse = sp.sparse.coo_matrix(adj_matrix, dtype=np.int8)
labels = range(1,7)
DF_adj = pd.DataFrame(adj_sparse.toarray(),index=labels,columns=labels)
print DF_adj
# 1 2 3 4 5 6
#1 0 1 0 0 1 0
#2 1 0 1 0 1 0
#3 0 1 0 1 0 0
#4 0 0 1 0 1 1
#5 1 1 0 1 0 0
#6 0 0 0 1 0 0
#Network graph
G = nx.Graph()
G.add_nodes_from(labels)
#Connect nodes
for i in range(DF_adj.shape[0]):
col_label = DF_adj.columns[i]
for j in range(DF_adj.shape[1]):
row_label = DF_adj.index[j]
node = DF_adj.iloc[i,j]
if node == 1:
G.add_edge(col_label,row_label)
#Draw graph
nx.draw(G,with_labels = True)
#DRAWN GRAPH MATCHES THE GRAPH FROM WIKI
#Recreate adjacency matrix
DF_re = pd.DataFrame(np.zeros([len(G.nodes()),len(G.nodes())]),index=G.nodes(),columns=G.nodes())
for col_label,row_label in G.edges():
DF_re.loc[col_label,row_label] = 1
DF_re.loc[row_label,col_label] = 1
print G.edges()
#[(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6)]
print DF_re
# 1 2 3 4 5 6
#1 0 1 0 0 1 0
#2 1 0 1 0 1 0
#3 0 1 0 1 0 0
#4 0 0 1 0 1 1
#5 1 1 0 1 0 0
#6 0 0 0 1 0 0
解决方案
如何从图转换为邻接矩阵:
How to convert from graph to adjacency matrix:
import scipy as sp
import networkx as nx
G=nx.fast_gnp_random_graph(100,0.04)
adj_matrix = nx.adjacency_matrix(G)
这里是文档.
从邻接矩阵到图:
H=nx.Graph(adj_matrix) #if it's directed, use H=nx.DiGraph(adj_matrix)
这是文档.
相关文章