PyTorch:传递 numpy 数组进行权重初始化
问题描述
我想用np数组初始化RNN的参数.
I'd like to initialize the parameters of RNN with np arrays.
在下面的示例中,我想将 w
传递给 rnn
的参数.我知道pytorch提供了很多初始化方法,比如Xavier、uniform等,但是有没有办法通过传递numpy数组来初始化参数呢?
In the following example, I want to pass w
to the parameters of rnn
. I know pytorch provides many initialization methods like Xavier, uniform, etc., but is there way to initialize the parameters by passing numpy arrays?
import numpy as np
import torch as nn
rng = np.random.RandomState(313)
w = rng.randn(input_size, hidden_size).astype(np.float32)
rnn = nn.RNN(input_size, hidden_size, num_layers)
解决方案
首先,让我们注意 nn.RNN
有多个权重变量,c.f.文档:
First, let's note that nn.RNN
has more than one weight variable, c.f. the documentation:
变量:
weight_ih_l[k]
– 第k
层的可学习输入隐藏权重,形状为(hidden_size * input_size)
k = 0
.否则,形状是(hidden_size * hidden_size)
weight_hh_l[k]
–k
层的可学习隐藏权重,形状为(hidden_size * hidden_size)
bias_ih_l[k]
–k
层的可学习输入隐藏偏差,形状为(hidden_size)
bias_hh_l[k]
–k
-th 层的可学习 hidden-hidden 偏差,形状为(hidden_size)
weight_ih_l[k]
– the learnable input-hidden weights of thek
-th layer, of shape(hidden_size * input_size)
fork = 0
. Otherwise, the shape is(hidden_size * hidden_size)
weight_hh_l[k]
– the learnable hidden-hidden weights of thek
-th layer, of shape(hidden_size * hidden_size)
bias_ih_l[k]
– the learnable input-hidden bias of thek
-th layer, of shape(hidden_size)
bias_hh_l[k]
– the learnable hidden-hidden bias of thek
-th layer, of shape(hidden_size)
现在,每个变量(Parameter
实例)是 nn.RNN
实例的属性.您可以通过两种方式访问和编辑它们,如下所示:
Now, each of these variables (Parameter
instances) are attributes of your nn.RNN
instance. You can access them, and edit them, two ways, as show below:
- 方案一:按名称访问所有RNN
Parameter
属性(rnn.weight_hh_lK
、rnn.weight_ih_lK
等):
import torch
from torch import nn
import numpy as np
input_size, hidden_size, num_layers = 3, 4, 2
use_bias = True
rng = np.random.RandomState(313)
rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)
def set_nn_parameter_data(layer, parameter_name, new_data):
param = getattr(layer, parameter_name)
param.data = new_data
for i in range(num_layers):
weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
set_nn_parameter_data(rnn, "weight_hh_l{}".format(i),
torch.from_numpy(weights_hh_layer_i))
set_nn_parameter_data(rnn, "weight_ih_l{}".format(i),
torch.from_numpy(weights_ih_layer_i))
if use_bias:
bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
set_nn_parameter_data(rnn, "bias_hh_l{}".format(i),
torch.from_numpy(bias_hh_layer_i))
set_nn_parameter_data(rnn, "bias_ih_l{}".format(i),
torch.from_numpy(bias_ih_layer_i))
- 方案二:通过
rnn.all_weights
列表属性访问所有RNNParameter
属性: - Solution 2: Accessing all the RNN
Parameter
attributes throughrnn.all_weights
list attribute:
import torch
from torch import nn
import numpy as np
input_size, hidden_size, num_layers = 3, 4, 2
use_bias = True
rng = np.random.RandomState(313)
rnn = nn.RNN(input_size, hidden_size, num_layers, bias=use_bias)
for i in range(num_layers):
weights_hh_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
weights_ih_layer_i = rng.randn(hidden_size, hidden_size).astype(np.float32)
rnn.all_weights[i][0].data = torch.from_numpy(weights_ih_layer_i)
rnn.all_weights[i][1].data = torch.from_numpy(weights_hh_layer_i)
if use_bias:
bias_hh_layer_i = rng.randn(hidden_size).astype(np.float32)
bias_ih_layer_i = rng.randn(hidden_size).astype(np.float32)
rnn.all_weights[i][2].data = torch.from_numpy(bias_ih_layer_i)
rnn.all_weights[i][3].data = torch.from_numpy(bias_hh_layer_i)
相关文章